首页 > 编程语言 >【Python】【爬虫】爬取小说5000章,遇到的爬虫问题与解决思路

【Python】【爬虫】爬取小说5000章,遇到的爬虫问题与解决思路

时间:2022-10-20 19:47:43浏览次数:68  
标签:5.0 5000 Python text Mozilla 爬虫 xrilang url Windows

爬虫问题分析

回顾

之前写了一个爬取小说网站的多线程爬虫,操作流程如下:

先爬取小说介绍页,获取所有章节信息(章节名称,章节对应阅读链接),然后使用多线程的方式(pool = Pool(50)),通过章节的阅读链接爬取章节正文并保存为本地markdown文件。(代码见文末 run01.python)

image-20221020170423210

image-20221020170353409

爬取100章,用了10秒

限制爬取101章,从运行程序到结束程序,用时9秒

Redis+MongoDB,无多线程

最近学了Redis和MongoDB,要求爬取后将章节链接放在redis,然后通过读取redis的章节链接来进行爬取。(代码见文末run02.python)

…不用测试了,一章一章读真的太慢了!

image-20221020171613094

爬取101章用时两分钟!

Redis+MongoDB+多线程

image-20221020171930346

image-20221020173407904

爬取101章,只需8秒!

爬取4012章,用时1分10秒!

image-20221020192410499

image-20221020192355217

问题与解析

懒得打字,我就录成视频发在小破站上面了。(小破站搜:萌狼蓝天)

代码

run01.py

# -*- coding: UTF-8 -*-
# 开发人员:萌狼蓝天
# 博客:Https://mllt.cc
# 笔记:Https://cnblogs.com/mllt
# 哔哩哔哩/微信公众号:萌狼蓝天
# 开发时间:2022/9/28
# https://www.lingdianksw8.com/31/31596/
import datetime
import re
import random
from multiprocessing import Pool

import requests
import bs4
import os

os.environ['NO_PROXY'] = "www.lingdianksw8.com"


def Log_text(lx="info", *text):
    lx.upper()
    with open("log.log", "a+", encoding="utf-8") as f:
        f.write("\n[" + str(datetime.datetime.now()) + "]" + "[" + lx + "]")
        for i in text:
            f.write(i)
    f.close()


# 调试输出
def log(message, i="info"):
    if type(message) == type(""):
        i.upper()
        print("[", i, "] [", str(type(message)), "]", message)
    elif type(message) == type([]):
        count = 0
        for j in message:
            print("[", i, "] [", str(count), "] [", str(type(message)), "]", j)
            count += 1
    else:
        print("[", i, "]  [", str(type(message)), "]", end=" ")
        print(message)


# 获取源码
def getCode(url, methods="post"):
    """
    获取页面源码
    :param methods: 请求提交方式
    :param url:书籍首页链接
    :return:页面源码
    """
    # 设置请求头
    user_agent = [
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
        "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
        "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)",
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
        "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
        "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
        "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
        "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5",
        "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
        "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
        "Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5",
        "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:2.0b13pre) Gecko/20110307 Firefox/4.0b13pre",
        "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:16.0) Gecko/20100101 Firefox/16.0",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
        "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10"
    ]
    headers = {
        'User-Agent': random.choice(user_agent),
        # "user-agent": user_agent[random.randint(0, len(user_agent) - 1)]
    }

    # 获取页面源码
    result = requests.request(methods, url, headers=headers, allow_redirects=True)
    log("cookie" + str(result.cookies.values()))
    tag = 0
    log("初始页面编码为:" + result.encoding)
    if result.encoding == "gbk" or result.encoding == "ISO-8859-1":
        log("初始页面编码非UTF-8,需要进行重编码操作", "warn")
        tag = 1
    try:
        result = requests.request(methods, url, headers=headers, allow_redirects=True, cookies=result.cookies)
    except:
        return "InternetError",""
    result_text = result.text
    # print(result_text)
    if tag == 1:
        result_text = recoding(result)
        log("转码编码完成,当前编码为gbk")
    return result_text


def recoding(result):
    try:
        result_text = result.content.decode("gbk",errors='ignore')
    except:
        # UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 6917:
        try:
            result_text = result.content.decode("").encode("unicode_escape").decode("gbk",errors='ignore')
        except:
            try:
                result_text = result.content.decode("gb18030",errors='ignore')
            except:
                result_text = result.text
    return result_text


# 分析数据
def getDict(code):
    """
    分析网页源码,获取数据,并存储为以字典元素构成的列表返回
    :param code:网页源码
    :return:List
    """
    # 通过正则的方式缩小范围
    code = re.findall("正文卷</dt>(.*?)</dl>", code, re.S)[0]
    # log(code)
    # obj = bs4.BeautifulSoup(markup=code,features="html.parser")
    obj = bs4.BeautifulSoup(markup=code, features="lxml")
    # log("输出结果")
    # log(obj.find_all("a"))
    # 通过上面调试输出可知得到的是个列表
    tag = obj.find_all("a")
    log("tag长度为:" + str(len(tag)))
    result = []
    count = 0
    for i in range(len(tag)):
        count += 1
        link = tag[i]["href"]
        text = tag[i].get_text()
        result.append({"title": text, "link": "https://www.lingdianksw8.com" + link})
    return result


# 文章内容
def getContent(url):

    code = getCode(url, "get")
    try:
        code = code.replace("<br />", "\n")
        code = code.replace("&nbsp;", " ")
        code = code.replace("        ", " ")
    except Exception as e:
    # AttributeError: 'tuple' object has no attribute 'replace'
        Log_text("error","[run01-161~163]"+str(e))
    # with open("temp.txt","w+",encoding="utf-8") as f:
    #     f.write(code)
    obj = bs4.BeautifulSoup(markup=code, features="lxml")
    titile = obj.find_all("h1")[0].text
    try:
        content = obj.find_all("div", attrs={"class": "showtxt"})[0].text
    except:
        return None, None
    # with open("temp.txt", "w+", encoding="utf-8") as f:
    #     f.write(content)
    # log(content)
    try:
        g = re.findall(
            "(:.*?https://www.lingdianksw8.com.*?天才一秒记住本站地址:www.lingdianksw8.com。零点看书手机版阅读网址:.*?.com)",
            content, re.S)[0]
        log(g)
        content = content.replace(g, "")
    except:
        Log_text("error", "清除广告失败!章节" + titile + "(" + url + ")")
    log(content)
    return titile, content


def docToMd(name, title, content):
    with open(name + ".md", "w+", encoding="utf-8") as f:
        f.write("## " + title + "/n" + content)
    f.close()
    return 0


# 多线程专供函数 - 通过链接获取文章
def thead_getContent(link):
    # 根据链接获取文章内容
    Log_text("info", "尝试获取" + str(link))
    title, content = getContent(str(link))  # 从文章内获取到标题和内容
    Log_text("success", "获取章节" + title + "完成")
    docToMd(title, title, content)
    Log_text("success", "写出章节" + title + "完成")


# 操作汇总
def run(url):
    with open("log1.log", "w+", encoding="utf-8") as f:
        f.write("")
        f.close()
    Log_text("info", "开始获取小说首页...")
    code = getCode(url)
    Log_text("success", "获取小说首页源代码完成,开始分析...")
    index = getDict(code)  # 获取到[{章节名称title:链接link}]
    links = []
    # lineCount限制要爬取的数量
    lineCount = 0
    for i in index:
        if lineCount > 100:
            break
        lineCount += 1
        links.append(i["link"])

    print("链接状态")
    print(type(links))
    print(links)
    Log_text("success", "分析小说首页完成,数据整理完毕,开始获取小说内容...")
    pool = Pool(50)  # 多线程
    pool.map(thead_getContent, links)


if __name__ == '__main__':
    start = datetime.datetime.today()
    Log_text("===【日志】[多线程-]开始新的测试 =|=|=|= " + str(start))
    run(r"https://www.lingdianksw8.com/31/31596")
    # getContent("http://www.lingdianksw8.com/31/31596/8403973.html")
    end = datetime.datetime.today()
    Log_text("===【日志】[多线程]测试结束 =|=|=|= " + str(end))
    Log_text("===【日志】[多线程]测试结束 =|=|=|= 用时" + str(end - start))
    print("")

run02.py

# -*- coding: UTF-8 -*-
# 开发人员:萌狼蓝天
# 博客:Https://mllt.cc
# 笔记:Https://cnblogs.com/mllt
# 哔哩哔哩/微信公众号:萌狼蓝天
# 开发时间:2022/9/28
# https://www.lingdianksw8.com/31/31596/

"""
1.通过run01获取章节的链接,将链接存储到Redis中
2.从Redis获取章节链接并爬取
"""
import re

import pymongo
from lxml import html
import run01 as xrilang
import redis
import datetime
client = redis.StrictRedis()

def getLinks():
     xrilang.Log_text("===【日志】开始获取章节名称和链接")
     code = xrilang.getCode("https://www.lingdianksw8.com/61153/61153348/","get")
     source = re.findall("正文卷</dt>(.*?)</dl>", code, re.S)[0]
     selector = html.fromstring(source)
     title_list = selector.xpath("//dd/a/text()")
     url_list = selector.xpath("//dd/a/@href")
     client.flushall() # 清空Redis全部内容,避免重复运行造成的数据重复
     xrilang.Log_text("===【日志】开始获取标题")
     for title in title_list:
        xrilang.log(title)
        client.lpush('title_queue', title)
     xrilang.Log_text("===【日志】开始获取章节链接")
     for url in url_list:
        xrilang.log(url)
        client.lpush('url_queue', url)
     xrilang.log(client.llen('url_queue'))
     xrilang.Log_text("===【日志】获取章节链接结束,共"+str(client.llen('url_queue'))+"条")
def getContent():
    xrilang.Log_text("===【日志】开始获取章节内容")
    database = pymongo.MongoClient()['book']
    collection = database['myWifeSoBeautifull']
    startTime=datetime.datetime.today()
    xrilang.log("开始"+str(startTime))
    linkCount=0
    datas=[]
    while client.llen("url_queue")>0:
        # 爬取101章
        if linkCount >10:
            break
        linkCount += 1
        url = client.lpop("url_queue").decode()
        title = client.lpop("title_queue").decode()
        xrilang.log(url)
        # 获取文章内容并保存到数据库
        content_url = "https://www.lingdianksw8.com"+url
        name,content = xrilang.getContent(content_url)
        if name!=None and content!=None:
            datas.append({"title":title,"name":name,"content":content})
    collection.insert_many(datas)

if __name__ == '__main__':
    start = datetime.datetime.today()
    xrilang.Log_text("===【日志】[redis+MongoDB无多线程]开始新的测试 =|=|=|= " + str(start))
    getLinks()
    getContent()
    end = datetime.datetime.today()
    xrilang.Log_text("===【日志】[redis+MongoDB无多线程]测试结束 =|=|=|= " + str(end))
    xrilang.Log_text("===【日志】[redis+MongoDB无多线程]测试结束 =|=|=|= 用时" + str(end-start))
    print("")

run03.py

# -*- coding: UTF-8 -*-
# 开发人员:萌狼蓝天
# 博客:Https://mllt.cc
# 笔记:Https://cnblogs.com/mllt
# 哔哩哔哩/微信公众号:萌狼蓝天
# 开发时间:2022/9/28
# https://www.lingdianksw8.com/31/31596/

"""
1.通过run01获取章节的链接,将链接存储到Redis中
2.从Redis获取章节链接并爬取
"""
import re
import time
from multiprocessing.dummy import Pool

import pymongo
from lxml import html
import run01 as xrilang
import redis
import datetime
client = redis.StrictRedis()
database = pymongo.MongoClient()['book']
collection = database['myWifeSoBeautifull']


def getLinks():
     xrilang.Log_text("===【日志】开始获取章节名称和链接")
     code = xrilang.getCode("https://www.lingdianksw8.com/61153/61153348/","get")
     source = re.findall("正文卷</dt>(.*?)</dl>", code, re.S)[0]
     selector = html.fromstring(source)
     url_list = selector.xpath("//dd/a/@href")
     client.flushall() # 清空Redis全部内容,避免重复运行造成的数据重复
     xrilang.Log_text("===【日志】开始获取章节链接")
     i=0
     for url in url_list:
        xrilang.log(url)
        client.lpush('url_queue', url)
        i+=1
        client.lpush('sort_queue', i) # 解决多线程爬虫导致的顺序问题
     xrilang.log(client.llen('url_queue'))
     xrilang.Log_text("===【日志】获取章节链接结束,共"+str(client.llen('url_queue'))+"条")
def getContent(durl):
    url = durl["url"]
    isort=durl["isort"]
    content_url = "https://www.lingdianksw8.com" + url
    title, content = xrilang.getContent(content_url)

    if title != None and content != None:
        if (title != "InternetError"):
            xrilang.log("获取"+title+"成功")
            collection.insert_one({"isort":isort,"title": title,  "content": content})
        else:
            # 没有成功爬取的添加回redis,等待下次爬取
            client.lpush('url_queue', url)
            client.lpush('sort_queue', isort)  # 解决多线程爬虫导致的顺序问题
            # 等待5秒
            time.sleep(5000)
def StartGetContent():
    xrilang.Log_text("===【日志】开始获取章节内容")
    startTime = datetime.datetime.today()
    xrilang.log("开始"+str(startTime))
    urls=[]
    # xrilang.log(client.llen("url_queue"))
    while client.llen("url_queue")>0:
        url = client.lpop("url_queue").decode()
        isort=  client.lpop("sort_queue").decode()
        #urls.append(url)
        urls.append({"url":url,"isort":isort})
    # xrilang.log(urls)
    pool = Pool(500)  # 多线程
    pool.map(getContent,urls)
    endTime=datetime.datetime.today()
    xrilang.log("【结束】"+str(endTime))
    xrilang.Log_text("===【日志】开始获取章节结束,用时"+str(endTime-startTime))
if __name__ == '__main__':
    start = datetime.datetime.today()
    xrilang.Log_text("===【日志】[redis+MongoDB+多线程]开始新的测试 =|=|=|= " + str(start))
    getLinks()
    StartGetContent()
    end = datetime.datetime.today()
    xrilang.Log_text("===【日志】[redis+MongoDB+多线程]测试结束 =|=|=|= " + str(end))
    xrilang.Log_text("===【日志】[redis+MongoDB+多线程]测试结束 =|=|=|= 用时" + str(end-start))
    print("")

标签:5.0,5000,Python,text,Mozilla,爬虫,xrilang,url,Windows
From: https://www.cnblogs.com/mllt/p/spider5000.html

相关文章

  • python self.__dict__.update 批量更新属性的使用
    首先我们回顾下字典的update方法,以及查看对象属性__dict__的使用;然后再看对象.__dict__update的使用 一、字典的update方法1.描述dict.update()update()函数把字典di......
  • Python第七章实验报告
    一、实验题目Python第七章实例和实战作业二、实验目的和要求1.熟悉Pycharm的运行环境2.学习并掌握Python的面向对象程序设计三、主要仪器设备联想小新air15硬件:AMD......
  • 【Python】第3章-15 统计一行文本的单词个数
    本题目要求编写程序统计一行字符中单词的个数。所谓“单词”是指连续不含空格的字符串,各单词之间用空格分隔,空格数可以是多个。输入格式:输入给出一行字符。输出格式:......
  • 【Python】第3章-14 字符串字母大小写转换
    本题要求编写程序,对一个以“#”结束的字符串,将其小写字母全部转换成大写字母,把大写字母全部转换成小写字母,其他字符不变输出。输入格式:输入为一个以“#”结束的字符串(不......
  • python内置模块之os sys 与json
    os模块os模块主要与代码运行所在的操作系统打交道importos1,创建目录(文件夹)os.mkdir(r'd1')#相对路径在执行文件所在的路径下创建目录可以创建单级目录os.mk......
  • 【Python基础学习】第六节 time模块 & datetime模块详解
    Python基础学习之时间模块time模块datetime模块Python中,关于时间的模块,常用为:time&datetime两个模块;时间相关的模块虽然内容挺多,但是并不需要死记硬背,只要留个印象就......
  • 【Python】第3章-13 字符串替换
    本题要求编写程序,将给定字符串中的大写英文字母按以下对应规则替换:原字母 对应字母A ZB YC XD W… …X CY BZ A输入格式:输入在一行中给出一个不超过80个字符、......
  • Python7-eg
    实例01(创建大雁类并定义飞行方法)1classGeese:2'''大雁类'''3def__init__(self,beak,wing,claw):4print("我是大雁类!我有以下特征:")5......
  • 项目开发神器VsCode配置指南!(含C++、Python、Java环境配置)
    作者:吴忠强,东北大学,Datawhale成员本篇文章虽然是VsCode挂名,但其实介绍了两款神器:Vscode和Vim,这两个结合起来,开发效率蹭蹭蹭!!!之前接触过VsCode但很少用。总感觉写Python......
  • 微博爬虫
    voidgetUser(){Map<String,Integer>map=newHashMap<>();HashMap<String,String>headers=newHashMap<>();headers.put("User-Ag......