首页 > 编程语言 >Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用|附代码数据

Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用|附代码数据

时间:2024-07-05 17:52:18浏览次数:24  
标签:语言 Python 模型 ARIMA GARCH 序列 预测

原文链接:http://tecdat.cn/?p=24407

最近我们被客户要求撰写关于金融时间序列模型的研究报告,包括一些图形和统计输出。

这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用  点击文末“阅读原文”获取完整代码数据******** )。

介绍

一个 ARMA (AutoRegressive-Moving Average)") 有两部分,AR(p)部分和MA(q)部分,表示如下

图片

图片

其中 L 是滞后算子,ϵi 是白噪声。它可以通过 Box-Jenkins method. 我们可能会使用 PACF 绘制识别 AR 滞后阶数 p,和 ACF 图以识别 MA 滞后阶数 q;或使用信息,例如 AIC 和 BIC 做模型选择。

ARIMA (AutoRegressive Integrated Moving Average)") 是 ARMA 的拓展,通过为非平稳过程添加阶数为 d 的积分部分。

ARIMA是针对价格水平或收益率的,而GARCH(广义自回归条件异方差)则试图对波动率或收益率平方的聚类进行建模。它将ARMA项扩展到方差方面。

图片

图片

作为随机波动率模型的离散版本,GARCH也能捕捉到股票市场的厚尾效应。因此,将ARIMA和GARCH结合起来,预计在模拟股票价格时比单独一个模型更适合。在这篇文章中,我们将把它们应用于标普500指数的价格。

ARIMA

首先,众所周知,股票价格不是平稳的;而收益可能是平稳的。ADF单位根检验结果。

   
# 价格是已知的非平稳的;收益是平稳的
import adfuller

rsut = aduler(close)
prnt(f'ADF Satitic: {reslt[]}, pale: {rslt1]}')  # null 假设:单位根存在;不能拒绝 null。

relt = adfler(histet)
prnt(f'ADF Statistic: {reut[0]}, pvaue: {rslt[1]}')   # 拒绝单位根的空假设 ==> 平稳

收益序列的 ADF p 值为 0,拒绝单位根的原假设。因此,我们在 ARIMA(p, d, q) 中接受 d=1,下一步是识别滞后 p 和 q。ACF 和 PACF 图表明滞后最多 35 个工作日。如果我们按照图表进行拟合,将有太多参数无法拟合。一种解决方案是使用每周或每月图表。在这里,我们将最大滞后时间限制为 5 天,并使用 AIC 选择最佳模型。

图片

   
for p in rage(6):
    for q in rage(6):
        ry:
            mft = fit(disp=0)
            ic[(p, q)] = fiaic
        except:
            pass

下一步是拟合模型并通过残差统计评估模型拟合。残差仍然显示出一些自相关,并且没有通过正态性检验。由于滞后阶数限制,这在某种程度上是预料之中的。

尽管如此,让我们继续最后一步并使用模型进行预测。下面比较了对测试集的收益率预测和实际收益率。

图片

收益率预测以 0% 为中心,置信区间在 ±2% 之间。结果并不是特别令人印象深刻。毕竟,市场正在经历一个动荡的阶段,在预测时间窗口内甚至下跌了 6%。


点击标题查阅往期内容

图片

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

GARCH

让我们看看加入GARCH效果是否会产生更好的结果。建模过程类似于ARIMA:首先识别滞后阶数;然后拟合模型并评估残差,最后如果模型令人满意,就用它来预测。

我们将 AR 滞后和 GARCH 滞后都限制为小于 5。结果最优阶为 (4,2,2)。

   
for l in rage(5):
    for p in rage(1, 5):
        for q in rage(1, 5):
            try:
                mdl = arch(is_et, man='ARX',  vol='Garch', p=p, o=0, q=q, dist='Nomal')
                fit(last_obs=spldat)
                dc_ic[(l, p, q)] =aic
            except:
                pass

接下来让我们根据选择的最佳参数来拟合模型,如下所示。证实了均值模型是AR(4),方差模型是GARCH(2, 2)。一些系数在统计上不显着。

图片

最后但并非最不重要的是,预测区间从±4%下降到±3%,然后又反弹到±5%,这清楚地表明了模型的波动性集群。请注意,这里是单步滚动预测,应该比静态的多期预测要好。

图片

趋势平稳和差分平稳

趋势平稳,即确定性趋势,具有确定性均值趋势。相反,差分平稳具有随机趋势。前者可以用OLS估计,后者需要先求差分。

考虑一个简单的过程

图片

如果 φ<1,则过程是趋势平稳的;也就是说,如果我们减去趋势 at,则过程变得平稳。若φ=1,则差分平稳。将第二个方程代入第一个方程很容易看出随机性,并将方程改写为

图片

图片

点击文末 “阅读原文”

获取全文完整资料。

本文选自《Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用》。

点击标题查阅往期内容

金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言多元Copula GARCH 模型时间序列预测
python中的copula:Frank、Clayton和Gumbel copula模型估计与可视化
R语言中的copula GARCH模型拟合时间序列并模拟分析
matlab使用Copula仿真优化市场风险数据VaR分析
R语言多元Copula GARCH 模型时间序列预测
R语言Copula函数股市相关性建模:模拟Random Walk(随机游走)
R语言实现 Copula 算法建模依赖性案例分析报告
R语言ARMA-GARCH-COPULA模型和金融时间序列案例
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言COPULA和金融时间序列案例
matlab使用Copula仿真优化市场风险数据VaR分析
matlab使用Copula仿真优化市场风险
R语言多元CopulaGARCH模型时间序列预测
R语言Copula的贝叶斯非参数MCMC估计
R语言COPULAS和金融时间序列R语言乘法GARCH模型对高频交易数据进行波动性预测
R语言GARCH-DCC模型和DCC(MVT)建模估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型
R语言ARMA-GARCH-COPULA模型和金融时间序列案例

标签:语言,Python,模型,ARIMA,GARCH,序列,预测
From: https://www.cnblogs.com/tecdat/p/18286334

相关文章

  • 还在为如何学Python而犯难吗?在这里分享下最全的Python学习路线!
    先是Python基础知识的看完基础的,那就来进阶的,前面的是入门,现在的也就是作为一个程序员的基础最后在来个爬虫的觉得有用的朋友,记得点赞哟,如果觉得还看得不过瘾,可以私信我,我这里有Python爬虫系统教学的免费直播观看名额或者还想看其他知识点的,可以在下面留言。......
  • Python学习篇:流程控制详细介绍(四)
    目录1前言2条件判断2.1基本语法2.2使用示例2.3注意事项3循环3.1for循环3.2while循环3.3循环控制语句 4异常处理 4.1基本语法4.2使用示例 4.3注意事项 1前言Python中的流程控制是编程中非常重要的一部分,它允许你根据条件、循环或其他因素来......
  • 超详细Python教程——函数和模块的使用
    函数和模块的使用在讲解本章节的内容之前,我们先来研究一道数学题,请说出下面的方程有多少组正整数解。事实上,上面的问题等同于将8个苹果分成四组每组至少一个苹果有多少种方案。想到这一点问题的答案就呼之欲出了。可以用Python的程序来计算出这个值,代码如下所示。"""......
  • 一个用来画拉氏图的简单Python脚本
    技术背景关于拉氏图的更多介绍,可以参考下这篇博客,这里简单引述一部分内容:Ramachandranplot(拉氏图)是由G.N.Ramachandran等人于1963年开发的,用来描述蛋白质结构中氨基酸残基二面角\(\psi\)和\(\phi\)是否在合理区域的一种可视化方法。同时也可以反映出该蛋白质的构象是否合理......
  • Python多线程-线程池ThreadPoolExecutor
    1.线程池不是线程数量越多,程序的执行效率就越快。线程也是一个对象,是需要占用资源的,线程数量过多的话肯定会消耗过多的资源,同时线程间的上下文切换也是一笔不小的开销,所以有时候开辟过多的线程不但不会提高程序的执行效率,反而会适得其反使程序变慢,得不偿失。为了防止无尽的线程......
  • Python的垃圾回收机制
    Python的垃圾回收机制引入计数器为主,标记清除和分代回收为辅1.引入计数器环状双向链表refchain在python程序中创建的任何对象都会放在refchain链表中当python程序运行时,会根据数据类型的不同找到其对应的结构体,根据结构体中的字段来进行创建相关的数据,然后将对象添加到rec......
  • python中logging
    Python的logging模块是一个用于记录应用程序日志消息的标准模块。它非常强大且灵活,允许你记录各种级别的日志消息,并配置输出格式、日志的存储位置以及处理日志的不同方式。以下是logging模块的基本介绍和用法。defcreate_logger(log_file):log_format='%(asctime)s......
  • 为什么现在的AI编程师都是用Python来编程?
    前言: 在当今AI大火的时节,涌入了一大批AI编程师,和AI训练师!显而易见他们都是用的Python语言来编程的。当然AI也给我们的工作带来了很多便利,比如AI绘画,写文章,视频剪辑,脚本创做等等方面现在都可以来用AI来协助我高效完成工作。那么我们来看看现在的AI编程师为什么都用Python语言......
  • python基础汇总(1)
    开始可以借鉴阿里腾讯开发规范——实际中运用会大体相近1、注释#:单行注释‘’‘’‘’或者“”“”“”:多行注释2、标识符合法:ABC、ABC_123、姓名、_123不合法:123、1ABC、if(保留字)、init(预定义标识符)(1)当标识符用作模块名时,应尽量短小,并且全部使用小写字母,可以使......
  • 《python机器学习从入门到高级》
    《python机器学习从入门到高级》分类算法:引言我们在之前的文章已经介绍了机器学习的一些基础概念,当拿到一个数据之后如何处理、如何评估一个模型、以及如何对模型调参等。接下来,我们正式开始学习如何实现机器学习的一些算法。回归和分类是机器学习的两大最基本的问题,对于......