算法原理
贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。具体来说,已知后验概率和条件概率,待分类样本取决于各类样本总体的方法,要求样本量足够大,且条件相互独立, 大型数据库中,而且方法简单、分类准确率高、速度快,但同时一般条件独立性很难满足,效果难以达到理论值。
首先贝叶斯算法基于贝叶斯定理:
贝叶斯学派的思想可以概括为先验概率+数据=后验概率,即
P(A)是 A 的先验概率,之所以称为“先验”是因为它不考虑任何 B 方面的因素。
P(A|B)是已知 B 发生后 A 的条件概率,也由于得自 B 的取值而被称作 A 的后验概率。
P(B|A)是已知 A 发生后 B 的条件概率,也由于得自 A 的取值而被称作 B 的后验概率。
P(B)是 B 的先验概率,也作标淮化常量
朴素贝叶斯分类的优缺点
优点:
(1) 算法逻辑简单,易于实现
(2)分类过程中时空开销小
缺点:
朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。
标签:概率,后验,分类,贝叶斯,算法,先验概率 From: https://blog.csdn.net/2301_77444219/article/details/140113389