pip install imageio
image = imageio.imread("1.jpg") imageio.imwrite("output_image.webp", image, "WEBP")
# 代码示例:使用Python的Keras库构建Autoencoder模型 from keras.models import Model from keras.layers import Input, Dense input_img = Input(shape=(784,)) encoded = Dense(128, activation='relu')(input_img) decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
rows, cols = (10, 10) F = [[0] * cols] * rows print(F) n=3 y=0 while y<10: x=0 while x<10: for i in range(y,y+n-1): for j in range(x,x+n-1): if(i<=9 and j<=9): F[i][j]=1 x=x+(n*2) y=y+(n*2) print(F)
标签:Dense,imageio,img,python,压缩,cols,input,image,图片 From: https://www.cnblogs.com/geovindu/p/18241266