首页 > 编程语言 >【BP时序预测】基于鱼鹰算法OOA优化BP神经网络实现温度数据预测算法研究附matlab代码

【BP时序预测】基于鱼鹰算法OOA优化BP神经网络实现温度数据预测算法研究附matlab代码

时间:2024-06-07 22:33:23浏览次数:30  
标签:偏置 OOA 鱼鹰 train 神经网络 算法 适应度 BP

以下是一个大致的步骤和MATLAB代码框架:

数据准备:准备用于训练和测试的温度数据集。
初始化BP神经网络:定义神经网络的结构(如隐藏层的数量和每层的神经元数量)。
定义适应度函数:这是优化算法的目标函数,它应该根据神经网络的预测性能(如均方误差MSE)来评估神经网络的权重和偏置。
鱼鹰算法(OOA):
初始化:随机生成一组神经网络权重和偏置作为鱼鹰的初始位置。
评估:使用适应度函数评估每个鱼鹰(即神经网络)的性能。
更新:根据鱼鹰算法的搜索策略更新鱼鹰的位置(即神经网络的权重和偏置)。
迭代:重复评估和更新步骤,直到满足停止条件(如达到最大迭代次数或适应度函数的值低于某个阈值)。
预测:使用优化后的神经网络进行温度预测。
以下是一个简化的MATLAB代码框架:

matlab
% 假设您已经有了训练数据X_train和对应的目标值T_train
% 以及测试数据X_test

% 1. 初始化BP神经网络
net = feedforwardnet(10); % 假设隐藏层有10个神经元

% 2. 定义适应度函数(示例,具体实现取决于您的需求)
function fitness = evaluateNetwork(net, X, T)
Y = net(X);
fitness = sum((Y - T).^2) / numel(T); % MSE作为适应度值
end

% 3. 鱼鹰算法(OOA)优化
% 这里只是一个框架,您需要实现具体的鱼鹰算法逻辑
function [bestNet, bestFitness] = optimizeWithOOA(net, X_train, T_train, options)
% 初始化鱼鹰(神经网络的权重和偏置)
% …

% 评估初始鱼鹰的性能  
% ...  
  
% 迭代更新鱼鹰的位置(即神经网络的权重和偏置)  
% ...  
  
% 返回最优的神经网络和对应的适应度值  
% ...  

end

% 使用鱼鹰算法优化BP神经网络
[bestNet, bestFitness] = optimizeWithOOA(net, X_train, T_train, options);

% 4. 使用优化后的神经网络进行预测
Y_test = bestNet(X_test);

% 评估预测性能(可选)
% …

标签:偏置,OOA,鱼鹰,train,神经网络,算法,适应度,BP
From: https://blog.csdn.net/qq_59771180/article/details/139482528

相关文章

  • 同星TSMaster中如何自定义E2E校验算法
    文章目录前言一、自定义E2E算法教程1.定义checksum算法2.定义【CAN预发送事件】3.E2E报文信号仿真4.运行工程二、TSMaster配置E2E教程1.激活仿真报文2.E2E配置三.小结前言最近因项目需要,用到TSMaster进行E2E校验算法实现。第一次使用TSMaster,把整个的过程做一个记......
  • 代码随想录算法训练营第三十一天 | 455.分发饼干 376.摆动序列 53.最大子数组和
    455.分发饼干题目链接文章讲解视频讲解classSolution{public:intfindContentChildren(vector<int>&g,vector<int>&s){sort(g.begin(),g.end());sort(s.begin(),s.end());intindex=0;//从最小的饼干开始遍历f......
  • 算法学习笔记(23):杜教筛
    杜教筛参考来源:OI-Wiki,网上博客线性筛可以在线性时间求积性函数前缀和,而杜教筛可以用低于线性时间求解积性函数前缀和。我们考虑\(S(n)\)就是积性函数的前缀和,所以我们尝试构造关于\(\largeS(n)\)关于\(\largeS(\lfloor\frac{n}{i}\rfloor)\)的递推式。对于任意......
  • m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:     2.算法涉及理论知识概要       低密度奇偶校验码(Low-DensityParity-CheckCode,LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。归一化最小和(NormalizedMin-Sum,NMS)译码......
  • 基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
    1.程序功能描述       车辆路径问题(VehicleRoutingProblem,VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。DVRP是一个经典的组合优化问题,在物流配送、运输调度等领域有广泛应用。它要求确定一组最优路径,使得一定数量的车辆从起......
  • 美团面试:百亿级分片,如何设计基因算法?
    文章很长,且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录博客园版为您奉上珍贵的学习资源:免费赠送:《尼恩Java面试宝典》持续更新+史上最全+面试必备2000页+面试必备+大厂必备+涨薪必备免费赠送:《尼恩技术圣经+高并发系列PDF》,帮你实现技术自由,完成职业升级,薪......
  • 【算法】深入浅出爬山算法:原理、实现与应用
     人不走空                                           ......
  • 雪花算法
    SnowFlake雪花算法概述雪花算法是由Twitter开发的一种分布式唯一ID生成算法,主要用于分布式系统中需要生成唯一ID的场景。它生成的ID既有全局唯一性,又有时间有序性。雪花算法ID结构一个典型的雪花算法生成的ID一共有64位,通常由以下几个部分组成:1位符号位:永远......
  • [自适应控制] 广义最小方差控制(GMVC)算法理论及其Matlab实现
     基于[自适应控制],广义最小方差控制(GMVC)算法理论与其Matlab实现,包括代码和参考书籍,适合新手学习,注释清晰,适合入门或者进行二创。模型获取:[自适应控制]广义最小方差控制(GMVC)算法理论及其Matlab实现......
  • [自适应控制] 最小方差控制(MVC)算法理论,及其 Matlab代码 实现
      个人整理了[自适应控制]最小方差控制(MVC)算法理论,并使用Matlab代码进行了实现,效果明显,配备了参考文献与书籍,适合新手学习使用。模型代码获取:  [自适应控制]最小方差控制(MVC)算法理论,及其Matlab代码实现......