首页 > 编程语言 >Python-GEE遥感云大数据分析、管理与可视化及多领域案例教程

Python-GEE遥感云大数据分析、管理与可视化及多领域案例教程

时间:2024-06-06 18:34:07浏览次数:21  
标签:Python AI 遥感 可视化 GEE 数据 影像

原文链接:Python-GEE遥感云大数据分析、管理与可视化及多领域案例教程icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247606139&idx=3&sn=2b98c8d5c99878ce78c8fade559bdae5&chksm=fa821e9ccdf5978a7e63a1d514f2a643158a595fa75ac751c5ca477692bbc84e993245b342df&token=296806589&lang=zh_CN#rd第一: 理论基础

1、Earth Engine平台及应用、主要数据资源

2、Earth Engine遥感云重要、数据类型与对象等

3、JavaScript与Python遥感云编程比较与选择

4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6、JavaScript和Python遥感云API差异,学习方法及资源推荐

7.ChatGPT、Claude、Gemini、文心一言等AI大模型介绍及其遥感领域中的应用

第二:开发环境搭建

1、本地端与云端Python遥感云开发环境

2、本地端开发环境搭建

1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

2)earthengine-api、geemap等必备软件包安装;

3)遥感云本地端授权管理;

4)Jupyter Notebook/Visual Studio Code安装及运行调试。 

3、云端Colab开发环境搭建

4、geemap及常用功能演示。

5.ChatGPT 4、Claude Opus、Gemini、文心一言等AI大模型使用演示。

第三:遥感大数据处理基础与AI大模型交互
1、遥感云平台影像数据分享处理流程介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。
2、要素和影像等对象显示和属性字段探索如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。
3、影像/要素的时间,空间和属性过滤方法如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4.波段运算、条件运算、植被指数计算、裁剪和镶嵌等:如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。
5、Landsat/Sentinel-2等常用光学影像去云:如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。
6、影像与要素的迭代循环如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。
7、影像数据整合(Reducer)如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。
8、领域分析与空间统计如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。
9、常见错误与代码优化遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10.Python遥感云数据分析专属包构建:如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四:典型案例操作实践与AI大模型交互
11、机器学习分类算法案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。
12、决策树森林分类算法案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。
13、洪涝灾害监测案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。
14、干旱遥感监测案例:使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。
15、物候特征分析案例:基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。
16、森林植被健康状态监测案例本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17.生态环境质量动态监测案例:使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五:输入输出及数据资产高效管理与AI大模型交互
1.本地数据与云端交互介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。
2.服务器端数据批量下载包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。
3.本地端数据上传与属性设置包括earthengine命令使用,如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4.个人数据资产管理:如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,如何批量取消上传/下载任务。

第六:云端数据论文出版级可视化与AI大模型交互
1.python可视化及主要软件包简介matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。
2.研究区地形及样地分布图绘制结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。
3.研究区域影像覆盖统计和绘图对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。
4.样本光谱特征与物候特征等分析绘图快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。
5.分类结果专题图绘制及时空动态延时摄影Timelapse制作单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6.分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。

第七:AI大模型与科研辅助经验分享
1.文献总结AI如何帮助研究人员高效提取文献要点,包括快速识别关键变量、研究方法和主要发现,旨在提升文献审阅的效率和质量。
2.文献查找如何利用AI工具从海量数据中筛选和推荐与研究议题相关的论文,从而加速文献回顾的过程并确保研究的全面性。
3.框架生成本节将指导如何运用AI工具构建科研论文的大纲框架,并提供结构和逻辑的修改建议,以加强论文的条理性和说服力。
4.图表生文AI如何辅助解读复杂的科研数据和图表,并将这些信息融入论文撰写中,增强论文的数据支撑力和论证的准确性。
5.中译英提升AI翻译工具如何帮助研究者将中文科研材料准确、流畅地转换为英文,满足国际学术交流的需求。

6.中英文润色:通过AI工具优化中文和英文论文的语言表达和学术措辞,提升论文的整体质量,使其更符合专业的学术标准和出版要求。

图片

图片

图片

图片

图片

图片

标签:Python,AI,遥感,可视化,GEE,数据,影像
From: https://blog.csdn.net/2301_78164062/article/details/139506832

相关文章

  • 可视化数据科学平台在信贷领域应用系列五:零代码可视化建模
    信贷风控模型是金融机构风险管理的核心工具,在信贷风险管理工作中扮演着至关重要的角色。随着信贷市场的环境不断变化,信贷业务的风险日趋复杂化和隐蔽化,开发和应用准确高效的信贷风控模型显得尤为重要。信贷风险控制面临着越来越大的挑战和压力,也对风控模型的性能提出了更高的要......
  • 【Python Cookbook】S01E22 替换文本 re.sub(),re.subn() 以及 回调函数
    目录问题解决方案讨论问题如果我们想要对字符串中的文本做替换,该如何办?解决方案针对简单的文本模式,我们直接使用字符串内置方法str.replace()函数即可。text="Ileaveamessageforyou."print(text.replace('leave','left'))结果:Ileftamessagefor......
  • 【python】 文件操作
    【2024/6/6】文件刪除保持【解決】一般删除文件时使用os库,然后利用os.remove(path)即可完成删除,如果删除空文件夹则可使用os.removedirs(path)即可,但是如果需要删除整个文件夹,且文件夹非空时使用os.removedirs(path)就会报错了,此时可以使用shutil库,该库为python内置库,是一个对......
  • python 基础习题5 --- 海龟画图系列
    1.  画出一个半径为100的圆,背景色和画笔颜色自己定义,如下图:importturtleastt.speed(10)t.bgcolor("black")t.pencolor("red")t.pensize(2)radius=100t.penup()t.goto(0,-100)t.down()t.circle(radius)t.penup()t.done()答案 2. 用循环画出五个同......
  • 00-macOS和Linux安装和管理多个Python版本
    在Mac上安装多个Python版本可通过几种不同方法实现。1Homebrew1.1安装Homebrew若安装过,跳过该步。/bin/bash-c"$(curl-fsSLhttps://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"1.2安装Python如安装Python3.7:[email protected]......
  • python SQLite3 库
    sqlite3是一个python中内置数据库,执行时会在本地文件夹中创建一个数据库   importsqlite3#连接到数据库,如果数据库不存在,则会被创建conn=sqlite3.connect('example.db')#创建一个cursor对象cursor=conn.cursor()#创建表格的SQL命令create_table_query......
  • 【Python机器学习】无监督学习——不同类型的预处理
    之前学习过,一些算法(比如神经网络和SVM)对数据缩放非常敏感。因此,通常的做法是对特征进行调节,使数据更适合于这些算法。通常来说,这是对数据的一种简单的按照特征的缩放和移动。举例:importmglearn.plotsimportmatplotlib.pyplotaspltmglearn.plots.plot_scaling()plt.sh......
  • 【爬虫+数据清洗+数据可视化】Python分析“淄博烧烤”热门事件-全流程附源码
    目录一、背景介绍二、爬虫代码2.1展示爬取结果2.2爬虫代码讲解三、可视化代码3.1读取数据3.2数据清洗3.3可视化3.3.1IP属地分析-柱形图3.3.2评论时间分析-折线图3.3.3点赞数分布-箱线图3.3.4评论内容-情感分布饼图3.3.5评论内容-词云图四、技术总结五、演示视频六、转载......
  • 在 Excel 中使用 Python 自动填充公式
    安转Python包的国内镜像源清华大学https://pypi.tuna.tsinghua.edu.cn/simple阿里云https://mirrors.aliyun.com/pypi/simple/豆瓣https://pypi.douban.com/simple/百度云https://mirror.baidu.com/pypi/simple/中科大https://pypi.mirrors.ustc.edu.cn/simpl......
  • Python学习笔记四(面向对象)
    传送门python及pycharm安装配置-CSDN博客 Python学习笔记(一)-CSDN博客 Python学习笔记(二)-CSDN博客 Python学习笔记三(面向对象)-CSDN博客 目录一、继承1.1什么是继承题外话:多继承的问题1.2重写1.3super()函数1.3.1调用父类的方法1.3.2多重继承中的调用(硬核)1.3.3......