一、什么是MapReduce
首先,将这个单词分解为Map、Reduce。
- Map阶段:在这个阶段,输入数据集被分割成小块,并由多个Map任务处理。每个Map任务将输入数据映射为一系列(key, value)对,并生成中间结果。
- Reduce阶段:在这个阶段,中间结果被重新分组和排序,以便相同key的中间结果被传递到同一个Reduce任务。每个Reduce任务将具有相同key的中间结果合并、计算,并生成最终的输出。
举个例子,在一个很长的字符串中统计某个字符出现的次数。
from collections import defaultdict
def mapper(word):
return word, 1
def reducer(key_value_pair):
key, values = key_value_pair
return key, sum(values)
def map_reduce_function(input_list, mapper, reducer):
'''
- input_list: 字符列表
- mapper: 映射函数,将输入列表中的每个元素映射到一个键值对
- reducer: 聚合函数,将映射结果中的每个键值对聚合到一个键值对
- return: 聚合结果
'''
map_results = map(mapper, input_list)
shuffler = defaultdict(list)
for key, value in map_results:
shuffler[key].append(value)
return map(reducer, shuffler.items())
if __name__ == "__main__":
words = "python best language".split(" ")
result = list(map_reduce_function(words, mapper, reducer))
print(result)
输出结果为
[('python', 1), ('best', 1), ('language', 1)]
但是这里并没有体现出MapReduce的特点。只是展示了MapReduce的运行原理。
二、基于多线程实现MapReduce
from collections import defaultdict
import threading
class MapReduceThread(threading.Thread):
def __init__(self, input_list, mapper, shuffler):
super(MapReduceThread, self).__init__()
self.input_list = input_list
self.mapper = mapper
self.shuffler = shuffler
def run(self):
map_results = map(self.mapper, self.input_list)
for key, value in map_results:
self.shuffler[key].append(value)
def reducer(key_value_pair):
key, values = key_value_pair
return key, sum(values)
def mapper(word):
return word, 1
def map_reduce_function(input_list, num_threads):
shuffler = defaultdict(list)
threads = []
chunk_size = len(input_list) // num_threads
for i in range(0, len(input_list), chunk_size):
chunk = input_list[i:i+chunk_size]
thread = MapReduceThread(chunk, mapper, shuffler)
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
return map(reducer, shuffler.items())
if __name__ == "__main__":
words = "python is the best language for programming and python is easy to learn".split(" ")
result = list(map_reduce_function(words, num_threads=4))
for i in result:
print(i)
这里的本质一模一样,将字符串分割为四份,并且分发这四个字符串到不同的线程执行,最后将执行结果归约。只不过由于Python的GIL机制,导致Python中的线程是并发执行的,而不能实现并行,所以在python中使用线程来实现MapReduce是不合理的。(GIL机制:抢占式线程,不能在同一时间运行多个线程)。
三、基于多进程实现MapReduce
由于Python中GIL机制的存在,无法实现真正的并行。这里有两种解决方案,一种是使用其他语言,例如C语言,这里我们不考虑;另一种就是利用多核,CPU的多任务处理能力。
from collections import defaultdict
import multiprocessing
def mapper(chunk):
word_count = defaultdict(int)
for word in chunk.split():
word_count[word] += 1
return word_count
def reducer(word_counts):
result = defaultdict(int)
for word_count in word_counts:
for word, count in word_count.items():
result[word] += count
return result
def chunks(lst, n):
for i in range(0, len(lst), n):
yield lst[i:i + n]
def map_reduce_function(text, num_processes):
chunk_size = (len(text) + num_processes - 1) // num_processes
chunks_list = list(chunks(text, chunk_size))
with multiprocessing.Pool(processes=num_processes) as pool:
word_counts = pool.map(mapper, chunks_list)
result = reducer(word_counts)
return result
if __name__ == "__main__":
text = "python is the best language for programming and python is easy to learn"
num_processes = 4
result = map_reduce_function(text, num_processes)
for i in result:
print(i, result[i])
这里使用多进程来实现MapReduce,这里就是真正意义上的并行,依然是将数据切分,采用并行处理这些数据,这样才可以体现出MapReduce的高效特点。但是在这个例子中可能看不出来很大的差异,因为数据量太小。在实际应用中,如果数据集太小,是不适用的,可能无法带来任何收益,甚至产生更大的开销导致性能的下降。
四、在100GB的文件中检索数据
这里依然使用MapReduce的思想,但是有两个问题
- 文件太大,读取速度慢
解决方法:
使用分块读取,但是在分区时不宜过小。因为在创建分区时会被序列化到进程,在进程中又需要将其解开,这样反复的序列化和反序列化会占用大量时间。不宜过大,因为这样创建的进程会变少,可能无法充分利用CPU的多核能力。
- 文件太大,内存消耗特别大
解决方法:
使用生成器和迭代器,但需获取。例如分块为8块,生成器会一次读取一块的内容并且返回对应的迭代器,以此类推,这样就避免了读取内存过大的问题。
from datetime import datetime
import multiprocessing
def chunked_file_reader(file_path:str, chunk_size:int):
"""
生成器函数:分块读取文件内容
- file_path: 文件路径
- chunk_size: 块大小,默认为1MB
"""
with open(file_path, 'r', encoding='utf-8') as file:
while True:
chunk = file.read(chunk_size)
if not chunk:
break
yield chunk
def search_in_chunk(chunk:str, keyword:str):
"""在文件块中搜索关键字
- chunk: 文件块
- keyword: 要搜索的关键字
"""
lines = chunk.split('\n')
for line in lines:
if keyword in line:
print(f"找到了:", line)
def search_in_file(file_path:str, keyword:str, chunk_size=1024*1024):
"""在文件中搜索关键字
file_path: 文件路径
keyword: 要搜索的关键字
chunk_size: 文件块大小,为1MB
"""
with multiprocessing.Pool() as pool:
for chunk in chunked_file_reader(file_path, chunk_size):
pool.apply_async(search_in_chunk, args=(chunk, keyword))
if __name__ == "__main__":
start = datetime.now()
file_path = "file.txt"
keyword = "张三"
search_in_file(file_path, keyword)
end = datetime.now()
print(f"搜索完成,耗时 {end - start}")
最后程序运行时间为两分钟左右。
标签:__,基于,word,key,Python,chunk,list,MapReduce,file From: https://www.cnblogs.com/changwan/p/18191125