参考的博客:https://www.cnblogs.com/JJBox/p/14300098.html
下面是计算示例
主要计算代码:
var peo = new PromptEntityOptions("选择直线1")
{
AllowNone = false,
AllowObjectOnLockedLayer = false
};
peo.SetRejectMessage("请选择直线Line");
peo.AddAllowedClass(typeof(Line), false);
var per1 = AcEnv.CurEd.GetEntity(peo);
peo.Message = "选择直线2";
var per2 = AcEnv.CurEd.GetEntity(peo);
var r = AcEnv.CurEd.GetDouble("输入圆弧半径:\n").Value;
if (per1.Status == PromptStatus.OK && per2.Status == PromptStatus.OK)
{
using (var tr = AcEnv.CurDb.TransactionManager.StartTransaction())
{
var l1 = (Line)tr.GetObject(per1.ObjectId, OpenMode.ForRead);
var l2 = (Line)tr.GetObject(per2.ObjectId, OpenMode.ForRead);
var pts = new Point3dCollection();
l1.IntersectWith(l2, Intersect.ExtendBoth, l1.GetPlane(), pts, IntPtr.Zero, IntPtr.Zero);
if (pts.Count == 0)
{
AcApp.Application.ShowAlertDialog("2直线无交点无法到圆角!");
tr.Abort();
return;
}
var p0 = pts[0];
var p02d = p0.Convert2d(l1.GetPlane());
var voa = p0.GetVectorTo(l1.EndPoint.GetMidPoint(l1.StartPoint));
var vob = p0.GetVectorTo(l2.EndPoint.GetMidPoint(l2.StartPoint));
var angle = voa.GetAngleTo(vob) * 0.5;
var doc = r / Math.Sin(angle);
var pa = p0.Add(voa.GetNormal() * (double)(r / Math.Tan(angle)));
var pb = p0.Add(vob.GetNormal() * (double)(r / Math.Tan(angle)));
var isCw = Tools.CrossAclockwise(p02d, pa.Convert2d(l1.GetPlane()), pb.Convert2d(l1.GetPlane()));
var pc = pa.Add((isCw ? voa : voa.Negate()).GetPerpendicularVector().GetNormal() * r);
var startAngle = pc.GetVectorTo(pb).Convert2d(l1.GetPlane()).GetAngle2XAxis();
var endAngle = pc.GetVectorTo(pa).Convert2d(l1.GetPlane()).GetAngle2XAxis();
Arc a = new Arc(pc, Vector3d.ZAxis, r, isCw ? startAngle : endAngle, isCw ? endAngle : startAngle);
//AcEnv.CurDb.AppendEntities(new DBPoint(p0), new DBPoint(pa), new DBPoint(pb), new DBPoint(pc));
AcEnv.CurDb.AppendEntities(a);
tr.Commit();
}
}
用到的拓展函数
public static Point3d GetMidPoint(this Point3d p1, Point3d p2)
{
return new Point3d((p1.X + p2.X) * 0.5, (p1.Y + p2.Y) * 0.5, (p1.Z + p2.Z) * 0.5);
}
/// <summary>
/// 叉积,二维叉乘计算
/// </summary>
/// <param name="a">传参是向量,表示原点是0,0</param>
/// <param name="b">传参是向量,表示原点是0,0</param>
/// <returns>其模为a与b构成的平行四边形面积</returns>
public static double Cross(Vector2d a, Vector2d b)
{
return a.X * b.Y - a.Y * b.X;
}
/// <summary>
/// 叉积,二维叉乘计算
/// </summary>
/// <param name="o">原点</param>
/// <param name="a">oa向量</param>
/// <param name="b">ob向量,此为判断点</param>
/// <returns>返回值有正负,表示绕原点四象限的位置变换,也就是有向面积</returns>
public static double Cross(Point2d o, Point2d a, Point2d b)
{
return Cross(o.GetVectorTo(a), o.GetVectorTo(b));
}
/// <summary>
/// 叉积,逆时针方向为真
/// </summary>
/// <param name="o">直线点1</param>
/// <param name="a">直线点2</param>
/// <param name="b">判断点</param>
/// <returns>b点在oa的逆时针<see cref="true"/></returns>
public static bool CrossAclockwise(Point2d o, Point2d a, Point2d b)
{
return Cross(o, a, b) > -1e-6;//浮点数容差考虑
}
/// <summary>
/// X轴到向量的弧度,cad的获取的弧度是1PI,所以转换为2PI(上小,下大)
/// </summary>
/// <param name="ve">向量</param>
/// <returns>弧度</returns>
public static double GetAngle2XAxis(this Vector2d ve)
{
double alz = Vector2d.XAxis.GetAngleTo(ve);//观察方向不要设置
alz = ve.Y > 0 ? alz : Math.PI * 2 - alz; //逆时针为正,如果-负值控制正反
alz = Math.Abs(Math.PI * 2 - alz) < 1e-10 ? 0 : alz;
return alz;
}
public static ObjectIdCollection AppendEntities(this Database acdb, params Entity[] ents)
{
ObjectIdCollection oids = [];
using (var tr = acdb.TransactionManager.StartTransaction())
{
var btr = (BlockTableRecord)acdb.CurrentSpaceId.GetObject(OpenMode.ForWrite);
foreach (var item in ents)
{
if (!item.IsNewObject) continue;
oids.Add(btr.AppendEntity(item));
tr.AddNewlyCreatedDBObject(item, true);
}
tr.Commit();
}
return oids;
}
}
标签:AutoCAD,C#,圆弧,tr,return,alz,l1,var,new From: https://www.cnblogs.com/NanShengBlogs/p/18173500