在数据科学和分析中,理解高维数据集中的底层模式是至关重要的。t-SNE已成为高维数据可视化的有力工具。它通过将数据投射到一个较低维度的空间,提供了对数据结构的详细洞察。但是随着数据集的增长,标准的t-SNE算法在计算有些困难,所以发展出了Barnes-Hut t-SNE这个改进算法,它提供了一个有效的近似,允许在不增加计算时间的情况下扩展到更大的数据集。
Barnes-Hut t-SNE 是一种高效的降维算法,适用于处理大规模数据集,是 t-SNE (t-Distributed Stochastic Neighbor Embedding) 的一个变体。这种算法主要被用来可视化高维数据,并帮助揭示数据中的内部结构。
https://avoid.overfit.cn/post/ec11566be83d4f4fb7cf31d09197d8e4
标签:SNE,Barnes,Hut,降维,算法,数据 From: https://www.cnblogs.com/deephub/p/18152360