首页 > 编程语言 >Python - 安装依赖包,发现与其他包版本冲突 ResolutionImpossible

Python - 安装依赖包,发现与其他包版本冲突 ResolutionImpossible

时间:2024-03-17 18:11:25浏览次数:143  
标签:kB 00 版本 Python ResolutionImpossible grpcio depends tensorboard 1.24

问题表现

To fix this you could try to:
1. loosen the range of package versions you've specified
2. remove package versions to allow pip attempt to solve the dependency conflict

ERROR: ResolutionImpossible
ERROR: Cannot install tensorboard==1.10.0, tensorboard==1.11.0, tensorboard==1.12.0, tensorboard==1.12.1, tensorboard==1.12.2, tensorboard==1.13.0, tensorboard==1.13.1, tensorboard==1.14.0, tensorboard==1.15.0, tensorboard==1.6.0, tensorboard==1.7.0, tensorboard==1.8.0, tensorboard==1.9.0, tensorboard==2.0.0, tensorboard==2.0.1, tensorboard==2.0.2, tensorboard==2.1.0, tensorboard==2.1.1, tensorboard==2.10.0, tensorboard==2.10.1, tensorboard==2.11.0, tensorboard==2.11.2, tensorboard==2.12.0, tensorboard==2.12.1, tensorboard==2.12.2, tensorboard==2.12.3, tensorboard==2.13.0, tensorboard==2.14.0, tensorboard==2.14.1, tensorboard==2.15.0, tensorboard==2.15.1, tensorboard==2.15.2, tensorboard==2.16.0, tensorboard==2.16.1, tensorboard==2.16.2, tensorboard==2.2.0, tensorboard==2.2.1, tensorboard==2.2.2, tensorboard==2.3.0, tensorboard==2.4.0, tensorboard==2.4.1, tensorboard==2.5.0, tensorboard==2.6.0, tensorboard==2.7.0, tensorboard==2.8.0, tensorboard==2.9.0 and tensorboard==2.9.1 because these package versions have conflicting dependencies.

The conflict is caused by:
    tensorboard 2.16.2 depends on grpcio>=1.48.2
    tensorboard 2.16.1 depends on grpcio>=1.48.2
    tensorboard 2.16.0 depends on grpcio>=1.48.2
    tensorboard 2.15.2 depends on grpcio>=1.48.2
    tensorboard 2.15.1 depends on grpcio>=1.48.2
    tensorboard 2.15.0 depends on grpcio>=1.48.2
    tensorboard 2.14.1 depends on grpcio>=1.48.2
    tensorboard 2.14.0 depends on grpcio>=1.48.2
    tensorboard 2.13.0 depends on grpcio>=1.48.2
    tensorboard 2.12.3 depends on grpcio>=1.48.2
    tensorboard 2.12.2 depends on grpcio>=1.48.2
    tensorboard 2.12.1 depends on grpcio>=1.48.2
    tensorboard 2.12.0 depends on grpcio>=1.48.2
    tensorboard 2.11.2 depends on grpcio>=1.24.3
    tensorboard 2.11.0 depends on grpcio>=1.24.3
    tensorboard 2.10.1 depends on grpcio>=1.24.3
    tensorboard 2.10.0 depends on grpcio>=1.24.3
    tensorboard 2.9.1 depends on grpcio>=1.24.3
    tensorboard 2.9.0 depends on grpcio>=1.24.3
    tensorboard 2.8.0 depends on grpcio>=1.24.3
    tensorboard 2.7.0 depends on grpcio>=1.24.3
    tensorboard 2.6.0 depends on grpcio>=1.24.3
    tensorboard 2.5.0 depends on grpcio>=1.24.3
    tensorboard 2.4.1 depends on grpcio>=1.24.3
    tensorboard 2.4.0 depends on grpcio>=1.24.3
    tensorboard 2.3.0 depends on grpcio>=1.24.3
    tensorboard 2.2.2 depends on grpcio>=1.24.3
    tensorboard 2.2.1 depends on grpcio>=1.24.3
    tensorboard 2.2.0 depends on grpcio>=1.24.3
    tensorboard 2.1.1 depends on grpcio>=1.24.3
    tensorboard 2.1.0 depends on grpcio>=1.24.3
    tensorboard 2.0.2 depends on grpcio>=1.24.3
    tensorboard 2.0.1 depends on grpcio>=1.24.3
    tensorboard 2.0.0 depends on grpcio>=1.6.3
    tensorboard 1.15.0 depends on grpcio>=1.6.3
    tensorboard 1.14.0 depends on grpcio>=1.6.3
    tensorboard 1.13.1 depends on grpcio>=1.6.3
    tensorboard 1.13.0 depends on grpcio>=1.6.3
    tensorboard 1.12.2 depends on grpcio>=1.6.3
    tensorboard 1.12.1 depends on grpcio>=1.6.3
    tensorboard 1.12.0 depends on grpcio>=1.6.3
    tensorboard 1.11.0 depends on grpcio>=1.6.3
    tensorboard 1.10.0 depends on protobuf>=3.4.0
    tensorboard 1.9.0 depends on protobuf>=3.4.0
    tensorboard 1.8.0 depends on protobuf>=3.4.0
    tensorboard 1.7.0 depends on protobuf>=3.4.0
    tensorboard 1.6.0 depends on protobuf>=3.4.0

To fix this you could try to:
1. loosen the range of package versions you've specified
2. remove package versions to allow pip attempt to solve the dependency conflict

ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts

 

解决方案

根据报错信息,tensorboard无法安装,是因为任何版本的tensorboard,都无法与现有的grpcio 、protobuf两个包兼容。

根据官网的建议:https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts 

 

把这三个包一起pip install,让pip工具自己去寻找让这三个共存的版本

pip install tensorboard protobuf grpcio
(pytorch) xxx@xxxdeMBP learnPytorchProject % pip install tensorboard protobuf grpcio
Collecting tensorboard
  Using cached tensorboard-2.16.2-py3-none-any.whl.metadata (1.6 kB)
Collecting protobuf
  Downloading protobuf-5.26.0-cp37-abi3-macosx_10_9_universal2.whl.metadata (592 bytes)
Collecting grpcio
  Downloading grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl.metadata (4.0 kB)
Collecting absl-py>=0.4 (from tensorboard)
  Using cached absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting markdown>=2.6.8 (from tensorboard)
  Downloading Markdown-3.6-py3-none-any.whl.metadata (7.0 kB)
Requirement already satisfied: numpy>=1.12.0 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from tensorboard) (1.26.4)
Requirement already satisfied: setuptools>=41.0.0 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from tensorboard) (68.2.2)
Requirement already satisfied: six>1.9 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from tensorboard) (1.16.0)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard)
  Downloading tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard)
  Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB)
Requirement already satisfied: importlib-metadata>=4.4 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard) (7.0.1)
Requirement already satisfied: MarkupSafe>=2.1.1 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard) (2.1.3)
Requirement already satisfied: zipp>=0.5 in /Users/cuixun/opt/anaconda3/envs/pytorch/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard) (3.17.0)
Downloading tensorboard-2.16.2-py3-none-any.whl (5.5 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 11.4 kB/s eta 0:00:00
Downloading protobuf-5.26.0-cp37-abi3-macosx_10_9_universal2.whl (404 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 404.0/404.0 kB 12.9 kB/s eta 0:00:00
Downloading grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl (10.1 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.1/10.1 MB 13.9 kB/s eta 0:00:00
Downloading absl_py-2.1.0-py3-none-any.whl (133 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.7/133.7 kB 10.4 kB/s eta 0:00:00
Downloading Markdown-3.6-py3-none-any.whl (105 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 105.4/105.4 kB 11.9 kB/s eta 0:00:00
Downloading tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl (4.8 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.8/4.8 MB 12.3 kB/s eta 0:00:00
Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 226.7/226.7 kB 11.7 kB/s eta 0:00:00
Installing collected packages: werkzeug, tensorboard-data-server, protobuf, grpcio, absl-py, markdown, tensorboard
Successfully installed absl-py-2.1.0 grpcio-1.62.1 markdown-3.6 protobuf-5.26.0 tensorboard-2.16.2 tensorboard-data-server-0.7.2 werkzeug-3.0.1

 

标签:kB,00,版本,Python,ResolutionImpossible,grpcio,depends,tensorboard,1.24
From: https://www.cnblogs.com/frankcui/p/18078915

相关文章

  • Python模块百科_操作系统接口_os[四]
    Python模块百科_操作系统接口_os[四]os---多种操作系统接口【第一部分】一、相关模块1.1os.path文件路径1.2fileinput文件读取1.3tempfile临时文件和目录1.4shutil高级文件和目录1.5platform操作系统底层模块二、关于函数适用性的说明2.1与操作系统相同的......
  • Python面向对象编程:合集篇(类、对象、封装、继承和多态)
    Python语言设计之初,就是为了面向对象。所以Python的面向对象更加易于理解。如果你以前学过Java、C++你大概就懂得什么是面向对象,但如果你是第一门编程语言就选择Python,那么也不要害怕。这篇文章,我们将会尽量详细的讲解,把Python面向对象编程的知识讲清楚。接下来我们先来简单的......
  • 基于Django高校校园二手书籍交易系统设计与实现(Pycharm+Python+Mysql)
     博主介绍:黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。项目配有对应开发文档、开题报告、任务书、P......
  • python——代码格式化
    风格与PEP8编写可读代码的一种简单方式是遵循风格指南,它概述了软件项目应该遵循的一组格式化规则。Python改进提案(PythonEnhancementProposal 简称PEP8)就是由Python核心开发团队编写的这样一种风格指南。PEP8甚至还建议:知道什么时候应该不一致——风格指南的建议并非放之......
  • 深度学习入门基于python的理论与实现-第五章误差反向传播法(个人向笔记)
    目录计算图链式法则反向传播加法结点的反向传播乘法结点的反向传播计算图计算图是一种图形化表示计算过程的方法,通常用于机器学习和深度学习中。在计算图中,节点代表操作(例如加法、乘法等),边代表数据流动(即操作的输入和输出)。通过计算图,可以清晰地展示计算过程中各个操作之间的依......
  • python解包是什么?
    在Python中,解包(unpacking)是一种将可迭代对象中的元素分配给变量的技术。这意味着你可以一次性从列表、元组、字符串或任何可迭代对象中提取多个值,并将它们赋值给多个变量。解包可以用于简化代码,使其更易于阅读和维护。基本解包基本解包是将可迭代对象中的元素一一对应地赋值给变......
  • Visual Studio Code中Python安装库文件遇到的问题
    不知道怎么安装库文件,在网上搜索出来好多都是VS2019版本,与现在的2023版本界面不太一样,但是还是可以通过pip安装,之前换过国内的源(现在已经忘了,果然不记录光靠脑子是不行的),用的是清华的源下载速度还可以。安装xlwt库时成功,但是安装BeautifulSoup库时报错,×Gettingrequirement......
  • Python数据降维之PCA主成分分析【附代码】
    目录1、数据降维(1)PCA主成分分析原理介绍1、二维空间降维2、二维空间降维3、n维空间降维(2)PCA主成分分析代码实现1、二维空间降维Python代码实现2、三维空间降维Python代码实现2、案例 -人脸识别模型(1)背景(2)人脸数据读取、处理与变量提取1、读取人脸照片数据2、人......
  • 如何系统的学习Python——迭代器和生成器
    在Python中,迭代器(Iterators)和生成器(Generators)是用于处理可迭代对象的重要工具。它们允许你按需产生值,而不是一次性生成所有值,从而在处理大量数据时更加高效。下面是关于迭代器和生成器的详细解释:迭代器(Iterators):可迭代对象:在Python中,可迭代对象是实现了__iter__()方......
  • python一些函数用法
    1、性别defxb(x):ifpd.isnull(x):return"空"elifint(x[-2])%2==1:return"男"elifint(x[-2])%2==0:return"女"else:return"其他"deff(x):returnx.nunique()2、省份defprovince(x):ifstr(x)[0:2]=='11':......