首页 > 编程语言 >python教程(中更新中)

python教程(中更新中)

时间:2024-03-14 12:59:01浏览次数:34  
标签:... 教程 函数 generator python list 更新 next fact

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

����(�)=�!=1×2×3×⋅⋅⋅×(�−1)×�=(�−1)!×�=����(�−1)×�fact(n)=n!=1×2×3×⋅⋅⋅×(n−1)×n=(n−1)!×n=fact(n−1)×n

所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):

    if n==1:

        return 1

    return n * fact(n - 1)

上面就是一个递归函数。可以试试:

>>> fact(1)1
>>> fact(5)120
>>> fact(100)93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)

===> 5 * fact(4)

===> 5 * (4 * fact(3))

===> 5 * (4 * (3 * fact(2)))

===> 5 * (4 * (3 * (2 * fact(1))))

===> 5 * (4 * (3 * (2 * 1)))

===> 5 * (4 * (3 * 2))

===> 5 * (4 * 6)

===> 5 * 24

===> 120

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

>>> fact(1000)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 4, in fact

  ...

  File "<stdin>", line 4, in fact

RuntimeError: maximum recursion depth exceeded in comparison

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):

    return fact_iter(n, 1)

def fact_iter(num, product):

    if num == 1:

        return product

    return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1和num * product在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(5, 1)的调用如下:

===> fact_iter(5, 1)

===> fact_iter(4, 5)

===> fact_iter(3, 20)

===> fact_iter(2, 60)

===> fact_iter(1, 120)

===> 120

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

练习

汉诺塔的移动可以用递归函数非常简单地实现。

请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A、B、C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法,例如:

# -*- coding: utf-8 -*-

def move(n, a, b, c):

    if n == 1:

        print(a, '-->', c)



# 期待输出:

# A --> C

# A --> B

# C --> B

# A --> C

# B --> A

# B --> C

# A --> C

move(3, 'A', 'B', 'C')

高级特性

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

L = []

n = 1

while n <= 99:

    L.append(n)

    n = n + 2

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。

切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []>>> n = 3
>>> for i in range(n):...     r.append(L[i])... 
>>> r

['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

>>> L[0:3]['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L[:3]['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

>>> L[-2:]['Bob', 'Jack']

>>> L[-2:-1]['Bob']

记住倒数第一个元素的索引是-1。

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L

[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:][90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20][10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2][0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5][0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:][0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]

(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]'ABC'>>> 'ABCDEFG'[::2]'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

练习

利用切片操作,实现一个trim()函数,去除字符串首尾的空格,注意不要调用str的strip()方法:

# -*- coding: utf-8 -*-

def trim(s):

    return s



# 测试:

if trim('hello  ') != 'hello':

    print('测试失败!')

elif trim('  hello') != 'hello':

    print('测试失败!')

elif trim('  hello  ') != 'hello':

    print('测试失败!')

elif trim('  hello  world  ') != 'hello  world':

    print('测试失败!')

elif trim('') != '':

    print('测试失败!')

elif trim('    ') != '':

    print('测试失败!')

else:

    print('测试成功!')

小结

有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C语言,迭代list是通过下标完成的,比如C代码:

for (i=0; i<length; i++) {

    n = list[i];

}

可以看出,Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}>>> for key in d:...     print(key)

...

a

c

b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':...     print(ch)

...

A

B

C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections.abc模块的Iterable类型判断:

>>> from collections.abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代True
>>> isinstance([1,2,3], Iterable) # list是否可迭代True
>>> isinstance(123, Iterable) # 整数是否可迭代False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):...     print(i, value)

...0 A1 B2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:...     print(x, y)

...1 12 43 9

练习

请使用迭代查找一个list中最小和最大值,并返回一个tuple:

# -*- coding: utf-8 -*-

def findMinAndMax(L):

    return (None, None)



# 测试

if findMinAndMax([]) != (None, None):

    print('测试失败!')

elif findMinAndMax([7]) != (7, 7):

    print('测试失败!')

elif findMinAndMax([7, 1]) != (1, 7):

    print('测试失败!')

elif findMinAndMax([7, 1, 3, 9, 5]) != (1, 9):

    print('测试失败!')

else:

    print('测试成功!')

小结

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []>>> for x in range(1, 11):...    L.append(x * x)

...>>> L

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]

[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']

['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录

['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }>>> for k, v in d.items():...     print(k, '=', v)

...

y = B

x = A

z = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }>>> [k + '=' + v for k, v in d.items()]

['y=B', 'x=A', 'z=C']

最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']>>> [s.lower() for s in L]

['hello', 'world', 'ibm', 'apple']

if ... else

使用列表生成式的时候,有些童鞋经常搞不清楚if...else的用法。

例如,以下代码正常输出偶数:

>>> [x for x in range(1, 11) if x % 2 == 0]

[2, 4, 6, 8, 10]

但是,我们不能在最后的if加上else:

>>> [x for x in range(1, 11) if x % 2 == 0 else 0]

  File "<stdin>", line 1

    [x for x in range(1, 11) if x % 2 == 0 else 0]

                                              ^

SyntaxError: invalid syntax

这是因为跟在for后面的if是一个筛选条件,不能带else,否则如何筛选?

另一些童鞋发现把if写在for前面必须加else,否则报错:

>>> [x if x % 2 == 0 for x in range(1, 11)]

  File "<stdin>", line 1

    [x if x % 2 == 0 for x in range(1, 11)]

                       ^

SyntaxError: invalid syntax

这是因为for前面的部分是一个表达式,它必须根据x计算出一个结果。因此,考察表达式:x if x % 2 == 0,它无法根据x计算出结果,因为缺少else,必须加上else:

>>> [x if x % 2 == 0 else -x for x in range(1, 11)]

[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

上述for前面的表达式x if x % 2 == 0 else -x才能根据x计算出确定的结果。

可见,在一个列表生成式中,for前面的if ... else是表达式,而for后面的if是过滤条件,不能带else。

练习

如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:

>>> L = ['Hello', 'World', 18, 'Apple', None]

>>> [s.lower() for s in L]

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 1, in <listcomp>

AttributeError: 'int' object has no attribute 'lower'

使用内建的isinstance函数可以判断一个变量是不是字符串:

>>> x = 'abc'>>> y = 123>>> isinstance(x, str)True>>> isinstance(y, str)False

请修改列表生成式,通过添加if语句保证列表生成式能正确地执行:

# -*- coding: utf-8 -*-

L1 = ['Hello', 'World', 18, 'Apple', None]

L2 = ???



# 测试:

print(L2)

if L2 == ['hello', 'world', 'apple']:

    print('测试通过!')

else:

    print('测试失败!')

小结

运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> g = (x * x for x in range(10))
>>> g

<generator object <genexpr> at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)0

>>> next(g)1

>>> next(g)4

>>> next(g)9

>>> next(g)16

>>> next(g)25

>>> next(g)36

>>> next(g)49

>>> next(g)64

>>> next(g)81

>>> next(g)Traceback (most recent call last):

  File "<stdin>", line 1, in <module>StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))>>> for n in g:...     print(n)... 0149162536496481

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):

    n, a, b = 0, 0, 1

    while n < max:

        print(b)

        a, b = b, a + b

        n = n + 1

    return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuplea = t[0]b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)112358'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator函数,只需要把print(b)改为yield b就可以了:

def fib(max):

    n, a, b = 0, 0, 1

    while n < max:

        yield b

        a, b = b, a + b

        n = n + 1

    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator函数,调用一个generator函数将返回一个generator:

>>> f = fib(6)

>>> f<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator函数和普通函数的执行流程不一样。普通函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator函数,依次返回数字1,3,5:

def odd():

    print('step 1')

    yield 1

    print('step 2')

    yield(3)

    print('step 3')

    yield(5)

调用该generator函数时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()

>>> next(o)

step 11

>>> next(o)

step 23

>>> next(o)

step 35

>>> next(o)Traceback (most recent call last):

  File "<stdin>", line 1, in <module>StopIteration

可以看到,odd不是普通函数,而是generator函数,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

 请务必注意:调用generator函数会创建一个generator对象,多次调用generator函数会创建多个相互独立的generator。

有的童鞋会发现这样调用next()每次都返回1:

>>> next(odd())

step 11

>>> next(odd())

step 11

>>> next(odd())

step 11

原因在于odd()会创建一个新的generator对象,上述代码实际上创建了3个完全独立的generator,对3个generator分别调用next()当然每个都会返回第一个值。

正确的写法是创建一个generator对象,然后不断对这一个generator对象调用next():

>>> g = odd()>>> next(g)

step 11>>> next(g)

step 23>>> next(g)

step 35

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator函数后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):...     print(n)

...112358

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)>>> while True:...     try:...         x = next(g)...         print('g:', x)...     except StopIteration as e:...         print('Generator return value:', e.value)...         break

...

g: 1

g: 1

g: 2

g: 3

g: 5

g: 8

Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

练习

杨辉三角定义如下:

          1
         / \
        1   1
       / \ / \
      1   2   1
     / \ / \ / \
    1   3   3   1
   / \ / \ / \ / \
  1   4   6   4   1
 / \ / \ / \ / \ / \
1   5   10  10  5   1

把每一行看做一个list,试写一个generator,不断输出下一行的list:​​​​​​​

# -*- coding: utf-8 -*-



def triangles():

    pass



# 期待输出:

# [1]
# [1, 1]
# [1, 2, 1]
# [1, 3, 3, 1]
# [1, 4, 6, 4, 1]
# [1, 5, 10, 10, 5, 1]
# [1, 6, 15, 20, 15, 6, 1]
# [1, 7, 21, 35, 35, 21, 7, 1]
# [1, 8, 28, 56, 70, 56, 28, 8, 1]
# [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

n = 0

results = []

for t in triangles():

    results.append(t)

    n = n + 1

    if n == 10:

        break



for t in results:

    print(t)



if results == [

    [1],
    [1, 1],
    [1, 2, 1],
    [1, 3, 3, 1],
    [1, 4, 6, 4, 1],
    [1, 5, 10, 10, 5, 1],
    [1, 6, 15, 20, 15, 6, 1],
    [1, 7, 21, 35, 35, 21, 7, 1],
    [1, 8, 28, 56, 70, 56, 28, 8, 1],
    [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

]:

    print('测试通过!')

else:

    print('测试失败!')

 小结

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

请注意区分普通函数和generator函数,普通函数调用直接返回结果:

>>> r = abs(6)>>> r6

generator函数的调用实际返回一个generator对象:

>>> g = fib(6)

>>> g<generator object fib at 0x1022ef948>

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)True
>>> isinstance({}, Iterable)True
>>> isinstance('abc', Iterable)True
>>> isinstance((x for x in range(10)), Iterable)True
>>> isinstance(100, Iterable)False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)True
>>> isinstance([], Iterator)False
>>> isinstance({}, Iterator)False
>>> isinstance('abc', Iterator)False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)True
>>> isinstance(iter('abc'), Iterator)True

你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:

    pass

实际上完全等价于:

# 首先获得Iterator对象:

it = iter([1, 2, 3, 4, 5])# 循环:while True:

    try:

        # 获得下一个值:

        x = next(it)

    except StopIteration:

        # 遇到StopIteration就退出循环

        break

函数式编程

函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。

标签:...,教程,函数,generator,python,list,更新,next,fact
From: https://blog.csdn.net/2301_76141427/article/details/136620678

相关文章

  • 深度学习入门(鱼书)笔记(持续更新)
    深度学习入门笔记python基础知识numpy库importnumpyasnpnumpy数组(numpy.ndarray):np.array(list)np数组算术运算需元素个数相同,否则报错。np数组间的算术运算为element-wise,即对应元素的运算。np数组与单一数值(标量)的运算为广播,即标量自动补全与数组各元素计算。......
  • Python爬虫实战系列2:虎嗅网24小时热门新闻采集
    一、分析页面打开虎嗅网,点击【24小时】本次采集,我们以这24小时的热门新闻为案例。1.1、分析请求F12打开开发者模式,然后点击Network后点击任意一个请求,Ctrl+F开启搜索,输入标题雷军回应,开始搜索可以看到请求地址为https://www.huxiu.com/moment/但是返回的内容不是json格式......
  • python--类与面向对象-2
    类与面向对象中一些重要函数讲解一、对象在文本中的输出classPerson:    def__init__(self,name,agg,live_value,money):        self.name=name        self.agg=agg        self.live_value=live_value ......
  • python装饰器
    一:什么是装饰器器:指的是工具,可以定义为函数装饰:指的是为其他事物添加额外的东西点缀装饰器:指的是定义一个函数,该函数是用来给其他函数添加额外的功能二、为什么要用装饰器开放封闭原则:开放:指的是对拓展功能是开放的封闭:指的......
  • Python的垃圾回收机制
    什么是垃圾回收机制垃圾回收(GarbageCollection)是一种自动内存管理机制,用于检测和释放不再被程序使用的内存资源,以避免内存泄漏和资源浪费。 在编程中,当对象被创建时,系统为其分配一块内存空间。但是,当对象不再被程序使用时,如果没有及时释放相关的内存空间,就会导致内存泄漏。垃......
  • Python特征选择技术总结
    本文还可以帮助你解答以下的面试问题:什么是特征选择?说出特性选择的一些好处你知道哪些特征选择技巧?区分单变量、双变量和多变量分析。我们能用PCA来进行特征选择吗?前向特征选择和后向特征选择的区别是什么?什么是特征选择,为什么它很重要?特性选择是选择与ML模型......
  • 使用Python检测贝叶斯网络的因果关系检测
    在机器学任务中,确定变量间的因果关系(causality)可能是一个具有挑战性的步骤,但它对于建模工作非常重要。本文将总结有关贝叶斯概率(Bayesianprobabilistic)因果模型(causalmodels)的概念,然后提供一个Python实践教程,演示如何使用贝叶斯结构学习来检测因果关系。背景在许多领域,......
  • 使用Python检测贝叶斯网络的因果关系检测
    在机器学任务中,确定变量间的因果关系(causality)可能是一个具有挑战性的步骤,但它对于建模工作非常重要。本文将总结有关贝叶斯概率(Bayesianprobabilistic)因果模型(causalmodels)的概念,然后提供一个Python实践教程,演示如何使用贝叶斯结构学习来检测因果关系。背景在许多领域,......
  • Python特征选择技术总结
    本文还可以帮助你解答以下的面试问题:什么是特征选择?说出特性选择的一些好处你知道哪些特征选择技巧?区分单变量、双变量和多变量分析。我们能用PCA来进行特征选择吗?前向特征选择和后向特征选择的区别是什么?什么是特征选择,为什么它很重要?特性选择是选择与ML模型......
  • 解决Thymeleaf模板修改不实时更新问题的有效方法
    修改yml文件,thymeleaf中的prefix:file:D:/resources是重点,如果只修改了cache:false也会不生效spring:thymeleaf:#不启用模版缓存cache:false#修改模板存放位置,使用file方式修改模板文件实时生效不需要重新编译prefix:file:D:/resources#如......