首页 > 编程语言 >【算法训练营】最长公共子序列,倒水问题,奶牛吃草(Python实现)

【算法训练营】最长公共子序列,倒水问题,奶牛吃草(Python实现)

时间:2024-03-13 09:34:07浏览次数:28  
标签:倒水 Python 训练营 样例 range abs 奶牛 青草 dp

最长公共子序列


时间限制:1 sec

空间限制:256 MB

问题描述

给定两个 1 到 n 的排列 A,B (即长度为 n 的序列,其中 [1,n] 之间的所有数都出现了恰好一次)。

求它们的最长公共子序列长度。

输入格式

第一行一个整数 n ,意义见题目描述。

第二行 n 个用空格隔开的正整数 A[1],…,A[n],描述排列 A。

第三行 n 个用空格隔开的正整数 B[1],…,B[n],描述排列 B。

输出格式

一行一个整数,表示 A,B 的最长公共子序列的长度。

样例输入

5
1 2 4 3 5
5 2 3 4 1

样例输出

2

样例解释

(2,3) 和 (2,4) 都可以是这两个序列的最长公共子序列。

数据范围

对于 80% 的数据,保证 n<=5,000。

对于 100% 的数据,保证 n<=50,000。

提示

[把 A 中的所有数替换成其在 B 中出现的位置,想一想,新序列的最长上升子序列和所求的东西有什么关系呢?]

代码实现 

def cal_loc():
    for i in range(1, n + 1):
        loc[b[i]] = i

def lis():
    a[1] = b[1]
    k = 1
    for i in range(2, n + 1):
        if a[k] < b[i]:
            k += 1
            a[k] = b[i]
        else:
            l, r = 1, k
            while l <= r:
                mid = (l + r) // 2
                if a[mid] < b[i]:
                    l = mid + 1
                else:
                    r = mid - 1
            a[l] = b[i]
    return k

n = int(input())
a = [0] + list(map(int, input().split()))
b = [0] + list(map(int, input().split()))
loc = [0] * (n + 1)

cal_loc()

for i in range(1, n + 1):
    b[i] = loc[a[i]]

print(lis())

倒水问题


时间限制:10 sec

空间限制:256 MB

问题描述

邓老师有有 2 个容量分别为 n 单位、m 单位的没有刻度的杯子。初始,它们都是空的。

邓老师给了你 t 分钟时间。每一分钟,他都可以做下面 4 件事中的任意一件:

  1. 用水龙头装满一个杯子。
  2. 倒空一个杯子。
  3. 把一个杯子里的水倒到另一个杯子里,直到一个杯子空了或者另一个杯子满了。
  4. 什么都不做。

邓老师希望最后能获得 d 个单位的水,假设最后两个杯具中水量的总和为 x,那么邓老师的不满意度就为 |d-x|。

你希望邓老师尽可能地满意,于是请你计算邓老师的不满意度最小是多少。

输入格式

一行 4 个整数 n,m,t,d,分别表示两个杯具的容量、时间限制、以及邓老师的期望值。

输出格式

一行一个整数,表示邓老师最小的不满意度。

样例输入

7 25 2 16

样例输出

9

样例解释

你可以在第 1 分钟用水龙头装满任意一个杯子,并在第 2 分钟什么都不做,即可让邓老师的不满意度为 9。

可以证明不存在更优的解。

数据范围

本题共设置 16 个测试点。

对于前 1 个测试点,保证 t=1。

对于前 2 个测试点,保证 t<=2。

对于前 4 个测试点,保证 t<=4。

对于前 10 个测试点,保证 1<=n,m<=100,1<=t<=100,1<=d<=200。

对于所有的 16 个测试点,保证 1<=n,m<=2,000,1<=t<=200,1<=d<=4,000。

代码实现 

奶牛吃草


时间限制:4 sec

空间限制:256 MB

问题描述

有一只奶牛在一条笔直的道路上(可以看做是一个数轴)。初始,它在道路上坐标为 K 的地方。

这条道路上有 n 棵非常新鲜的青草(编号从 1 开始)。其中第 i 棵青草位于道路上坐标为 x[i] 的地方。贝西每秒钟可以沿着道路的方向向前(坐标加)或向后(坐标减)移动一个坐标单位的距离。

它只要移动到青草所在的地方,就可以一口吞掉青草,它的食速很快,吃草的时间可以不计。

它要吃光所有的青草。不过,青草太新鲜了,在被吞掉之前,暴露在道路上的每棵青草每秒种都会损失一单位的口感。

请你帮它计算,该怎样来回跑动,才能在口感损失之和最小的情况下吃掉所有的青草。

输入格式

第一行两个用空格隔开的整数 n,k,分别表示青草的数目和奶牛的初始坐标。

第 2 行到第 n+1 行,第 i+1 行有一个整数 x[i],描述第 i 棵青草的坐标。

输出格式

一行一个整数,表示吃掉所有青草的前提下,最小损失的口感之和。保证答案在 32 位有符号整数的范围内。

样例输入

4 10
1
9
11
19

样例输出

44

样例解释

先跑到 9,然后跑到 11,再跑到 19,最后到 1,可以让损失的口感总和为 29+1+3+11=44。可以证明不存在比这更优的解。

数据范围

对于 50% 的数据,保证 1≤n≤4,1≤k,x[i]≤20。 对于 80% 的数据,保证 1≤n≤100。 对于 100% 的数据,保证 1≤n≤1000,1≤k,x[i]≤10^6。

提示

[我们先从另一个角度看答案,即损失的总口感:从初始状态到奶牛吃掉第 1 棵草之间的时间(我们在下面把它叫做第 1 段时间),所有的 n 棵青草都在流失口感;……;从奶牛吃掉第 i 棵草到它吃掉第 i+1 棵草之间的时间(我们在下面把它叫做第 i+1 段时间),还没有被吃掉的 n-i 棵草都在流失口感;……]

[于是我们发现,第 i 段时间对答案的贡献,为这段时间的长度与 n-i+1 的乘积。]

[接着,我们再来关注最优策略。吃完一棵草后(包括初始时),奶牛的最优策略一定是直奔另一棵草。]

[由于奶牛不会飞,所以奶牛走过的所有路一定是一段连续的区间。]

[显然地,被奶牛经过过的地方,按最优策略,一定不会留下青草。]

[所以我们可以**将所有青草的坐标排序**(下面我们都使用排完序后的编号),然后用 dp[l][r][j] 表示吃完 [l,r] 范围内的青草时的最小答案,j 只有 0,1 两种取值,分别表示奶牛吃完最后一棵草停在青草 l 还是 r 上(只有可能是这两种情况,否则与上面的结论矛盾)。]

[于是我们就可以轻易地设计出状态转移方程:]

[dp[l][r][0]=min(dp[l+1][r][0]+(n-r+l)*abs(x[l]-x[l+1]),dp[l+1][r][1]+(n-r+l)*abs(x[l]-x[r]))]

[dp[l][r][1]=min(dp[l][r-1][1]+(n-r+l)*abs(x[r]-x[r-1]),dp[l][r-1][0]+(n-r+l)*abs(x[r]-x[l]))]

[边界为:dp[i][i][j]=abs(x[i]-k)*n(对于所有1<=i<=n,j=0,1)]

[友情提示:请注意枚举顺序。]

代码实现

def min_taste_loss(n, k, x):
    INF = float('inf')
    dp = [[[INF for _ in range(2)] for _ in range(n + 1)] for _ in range(n + 1)]

    # Base case
    for i in range(1, n + 1):
        dp[i][i][0] = dp[i][i][1] = abs(x[i] - k) * n

    # Dynamic programming
    for length in range(2, n + 1):
        for l in range(1, n - length + 2):
            r = l + length - 1

            dp[l][r][0] = min(dp[l + 1][r][0] + (n - r + l) * abs(x[l] - x[l + 1]),
                              dp[l + 1][r][1] + (n - r + l) * abs(x[l] - x[r]))

            dp[l][r][1] = min(dp[l][r - 1][1] + (n - r + l) * abs(x[r] - x[r - 1]),
                              dp[l][r - 1][0] + (n - r + l) * abs(x[r] - x[l]))

    return min(dp[1][n][0], dp[1][n][1])

# 读取输入
n, k = map(int, input().split())
x = [0] + [int(input()) for _ in range(n)]  # 青草的坐标,下标从1开始

# 排序青草的坐标
x.sort()

# 输出结果
result = min_taste_loss(n, k, x)
print(result)

标签:倒水,Python,训练营,样例,range,abs,奶牛,青草,dp
From: https://blog.csdn.net/chen695969/article/details/136505244

相关文章

  • 【算法训练营】邓老师书,子序列,前缀(python实现)
    邓老师数时间限制:1sec空间限制:256MB问题描述众所周知,大于1的自然数中,除了1与其本身外不再有其他因数的数称作质数(素数)。对于大于1的不是质数的自然数,我们又称作合数。参加了邓老师算法训练营的小Z突发奇想,定义了新的数:所有合数中,除了1与其本身外,其他因......
  • Python爬虫实战系列1:博客园cnblogs热门新闻采集
    实战案例:博客园热门新闻采集一、分析页面打开博客园网址https://www.cnblogs.com/,点击【新闻】再点击【本周】本次采集,我们以页面新闻标题为案例来采集。这里可以看到标题“李彦宏:以后不会存在“程序员”这种职业了”。1.1、分析请求F12打开开发者模式,然后点击Network后点......
  • Python爬取免费IP代理时,无法解析到数据
    大家好,我是Python进阶者。一、前言前几天在Python最强王者交流群【ZXS】问了一个Python网络爬虫实战问题。问题如下:我这里遇到一个问题:【爬取免费IP代理时,无法解析到数据】,我通过xpath,css定位到了元素,但是在运行时返回空列表,请问我该怎么解决呀以下是解析数据的截图:他自......
  • Python控制摄像头并获取数据文件
    一、引言摄像头作为计算机视觉领域的核心设备之一,广泛应用于视频监控、图像采集和数据处理等领域。通过Python编程语言,我们可以实现对摄像头的精确控制,包括摄像头的开启、关闭、参数设置以及数据获取等功能。本文将指导读者完成这些操作,实现摄像头数据的自动化管理。二、摄像......
  • Python数学建模-2.2Python基本数据类型
    各位小伙伴大家好,今天开始学习司守奎老师的《数学建模算法与应用》啦,我也会边学习边与大家分享书中的内容,希望与大家共同进步哦Python中的基本数据类型主要包括以下几种:数字(Numbers)整型(int):正或负整数,没有限制大小。例如:100,-8080,0。浮点型(float):浮点数,即带有小数点的数字。......
  • python安装库文件的时候一个一个安装的py脚本
    在编译安装一些python软件的时候,经常使用pipinstall-rrequirements.txt命令执行。如果其中一个库编译失败,会导致所有的库安装失败,非常费事费力。于是写了一个py小脚本pipinstall.py,将库改为一个一个的安装,这样再碰到编译失败的,也不会影响其它的库,节省时间。文件pipinsta......
  • Windows命令行不加解释器和文件后缀名直接运行Python脚本
    Windows命令行不加解释器和文件后缀名直接运行Python脚本首次编辑:24/2/29/20:30最后编辑:24/2/25/20:44引子都知道Windowscmd中,运行可执行文件和bat时,可以直接输入不带后缀的文件名。rem运行main.exemainrem运行mybat.batmybat而执行python脚本时,却需要指明python作......
  • 利用Python中的ORM操作数据库Mysql(一)
    如何用python操作数据库?很多同学在用python操作数据库的时候会使用pymysql,这确实是一种成熟的方案,但是要写很多sql语句,今天我就来介绍在Django中使用ORM的方法操作数据库。第一章链接数据库首先,安装第三方模块mysqlclient在终端输入:pipinstallmysqlclient启动mys......
  • 部署Python网站项目,测试灰度发布
    部署Python网站项目1安装python依赖软件yum-yinstallgccmakepython3python3-devel2安装项目依赖pip3installpytz-2022.6-py2.py3-none-any.whlpip3安装.whl结尾的包pip3installDjango-1.11.8-py2.py3-none-any.whlpip3installdjango-bootstrap3-11.0.0.tar......
  • python数据分析 datawhale
    数据分析数据载入及初步观察载入数据导入Numpy和pandasimportnumpyasnpimportpandasaspd使用相对路径和绝对路径载入数据df=pd.read_csv('train.csv')df=pd.read_csv('/Users/chenandong/Documents/datawhale数据分析每个人题目设计/招募阶段/第一单元项目集......