Python基础
按照约定俗成的惯例,应该始终坚持使用4个空格的缩进。
Python程序是大小写敏感的,如果写错了大小写,程序会报错。
数据类型和变量
数据类型
整数
- 任意大小的整数,包括负整数,和数学上的写法一致。
- 十六进制,用 0x 前缀和 0-9 ,a-f 表示
- 对于很大的数,100000000,可以写成 100_000_000,完全一样。包括十六进制 0xa1b2_c3d4。
浮点数
- 也就是小数。被叫做浮点数原因:按照科学计数法表示时,一个浮点数的小数点位置是可变的。$1.23*109$和$12.8*108$相等。对于很大或者很小的数必须用科学计数法代替,把10用e替代。
字符串
- 以单引号
'
或者双引号"
括起来的文本,如果有'
本身也是一个字符,可以使用"
。 - 如果字符串内部既包含
'
又包含"
,可以用转义字符\
来标识:'I\'m \"ok\"!
表示I'm "ok"!
。 \n
换行,\t
制表符,\
本身也要转译\\
表示\
。- 如果字符串里很多字符都要转义,为了简化,使用
r''
表示''
内部的字符串默认不转义。 - 多行字符串
'''...'''
布尔值
- 只有两种值
True
、False
。 - 可以用
and
、or
、not
运算。 - 常用在条件判断中。
空值
- 用
None
表示,不能理解成0
,因为0
是有意义的,而None
是一个特殊的空值。
变量
-
变量不仅可以是数字,还可以是任意数据类型。
-
变量名:大小写英文、数字和
_
的组合,且不能用数字开头。 -
等号
=
是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同的数据类型的变量。这种变量本身类型不固定的语言称之为$\textcolor{red}{动态语言}$,相对应的是$\textcolor{red}{静态语言}$,所以Python更灵活。 -
理解变量在计算机内存中的表示:
当写下:a = 'ABC'
时,Python解释器干了两件事:- 在内存中创建了
'ABC'
的字符串; - 还创建了一个名为
a
的变量,并把它指向'ABC'
。
小结:对变量赋值
x = y
是把变量x
指向真正的对象,该对象是变量y
所指向的。随后对变量y
的赋值$\textcolor{red}{不影响}$变量x
的指向。 - 在内存中创建了
常量
-
常量就是不能变的变量。
π
就是一个常量。 -
通常用全部大写的变量名来表示常量。
PI
-
除法
/
:计算结果是浮点数,即使整除了也是。 -
地板除
//
:取整 -
取余
%
字符串和编码
字符编码
ASCII
编码:包含大小写英文字母、数字和一些符号共127个字符。
Unicode
编码:最常用的是UCS-16
编码。
二者区别:ASCII
编码是1个字节,Unicode
编码通常是2个字节。
本着节约的精神,又出现了把Unicode编码转化为“可变长编码”的UTF-8
编码。UTF-8编码把一个Unicode字符根据不同的数字大小编码成1-6个字节,常用的英文字母被编码成1个字节,汉字通常是3个字节,只有很生僻的字符才会被编码成4-6个字节。
用记事本编辑的时候,从文件读取的UTF-8字符被转换为Unicode字符到内存里,编辑完成后,保存的时候再把Unicode转换为UTF-8保存到文件:
浏览网页的时候,服务器会把动态生成的Unicode内容转换为UTF-8再传输到浏览器:
Python的字符串
ord()
函数获取单个字符的整数表示,chr()
函数把编码转换为对应的字符
以Unicode表示的str
通过encode()
方法可以编码为指定的bytes
,例如:
>>> 'ABC'.encode('ascii')
b'ABC'
>>> '中文'.encode('utf-8')
b'\xe4\xb8\xad\xe6\x96\x87'
>>> '中文'.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)
纯英文的str
可以用ASCII
编码为bytes
,内容是一样的,含有中文的str
可以用UTF-8
编码为bytes
。含有中文的str
无法用ASCII
编码,因为中文编码的范围超过了ASCII
编码的范围,Python会报错。
在bytes
中,无法显示为ASCII字符的字节,用\x##
显示。
反过来,如果我们从网络或磁盘上读取了字节流,那么读到的数据就是bytes
。要把bytes
变为str
,就需要用decode()
方法:
>>> b'ABC'.decode('ascii')
'ABC'
>>> b'\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
'中文'
如果bytes
中包含无法解码的字节,decode()
方法会报错:
>>> b'\xe4\xb8\xad\xff'.decode('utf-8')
Traceback (most recent call last):
...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 3: invalid start byte
如果bytes
中只有一小部分无效的字节,可以传入errors='ignore'
忽略错误的字节:
>>> b'\xe4\xb8\xad\xff'.decode('utf-8', errors='ignore')
'中'
要计算str
包含多少个字符,可以用len()
函数:
>>> len('ABC')
3
>>> len('中文')
2
len()
函数计算的是str
的字符数,如果换成bytes
,len()
函数就计算字节数:
>>> len(b'ABC')
3
>>> len(b'\xe4\xb8\xad\xe6\x96\x87')
6
>>> len('中文'.encode('utf-8'))
6
可见,1个中文字符经过UTF-8编码后通常会占用3个字节,而1个英文字符只占用1个字节。
在操作字符串时,我们经常遇到str
和bytes
的互相转换。为了避免乱码问题,应当始终坚持使用UTF-8编码对str
和bytes
进行转换。
由于Python源代码也是一个文本文件,所以,当你的源代码中包含中文的时候,在保存源代码时,就需要务必指定保存为UTF-8编码。当Python解释器读取源代码时,为了让它按UTF-8编码读取,我们通常在文件开头写上这两行:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
第一行注释是为了告诉Linux/OS X系统,这是一个Python可执行程序,Windows系统会忽略这个注释;
第二行注释是为了告诉Python解释器,按照UTF-8编码读取源代码,否则,你在源代码中写的中文输出可能会有乱码。
格式化
在Python中,采用的格式化方式和C语言是一致的,用%
实现,举例如下:
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
你可能猜到了,%
运算符就是用来格式化字符串的。在字符串内部,%s
表示用字符串替换,%d
表示用整数替换,有几个%?
占位符,后面就跟几个变量或者值,顺序要对应好。如果只有一个%?
,括号可以省略。
常见的占位符有:
占位符 | 替换内容 |
---|---|
%d | 整数 |
%f | 浮点数 |
%s | 字符串 |
%x | 十六进制整数 |
其中,格式化整数和浮点数还可以指定是否补0和整数与小数的位数:
# -*- coding: utf-8 -*-
print('%2d-%02d' % (3, 1))
3-01
print('%.2f' % 3.1415926)
3.14
如果你不太确定应该用什么,%s
永远起作用,它会把任何数据类型转换为字符串:
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'
有些时候,字符串里面的%
是一个普通字符怎么办?这个时候就需要转义,用%%
来表示一个%
:
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'
format()
另一种格式化字符串的方法是使用字符串的format()
方法,它会用传入的参数依次替换字符串内的占位符{0}
、{1}
……,不过这种方式写起来比%要麻烦得多:
>>> 'Hello, {0}, 成绩提升了 {1:.1f}%'.format('小明', 17.125)
'Hello, 小明, 成绩提升了 17.1%'
f-string
最后一种格式化字符串的方法是使用以f
开头的字符串,称之为f-string
,它和普通字符串不同之处在于,字符串如果包含{xxx}
,就会以对应的变量替换:
>>> r = 2.5
>>> s = 3.14 * r ** 2
>>> print(f'The area of a circle with radius {r} is {s:.2f}')
The area of a circle with radius 2.5 is 19.62
上述代码中,{r}
被变量r
的值替换,{s:.2f}
被变量s
的值替换,并且:
后面的.2f
指定了格式化参数(即保留两位小数),因此,{s:.2f}
的替换结果是19.62
。
list和tuple
list
list是一种有序的集合,可以随时添加和删除其中的元素。
用len()
函数可以获得list元素的个数:
>>> len(classmates)
3
用索引来访问list中每一个位置的元素,记得索引是从0
开始的:
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
当索引超出了范围时,Python会报一个IndexError
错误,所以,要确保索引不要越界,记得最后一个元素的索引是len(classmates) - 1
。
如果要取最后一个元素,除了计算索引位置外,还可以用-1
做索引,直接获取最后一个元素:
>>> classmates[-1]
'Tracy'
以此类推,可以获取倒数第2个、倒数第3个:
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
当然,倒数第4个就越界了。
list是一个可变的有序表,所以,可以往list中追加元素到末尾:
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']
也可以把元素插入到指定的位置,比如索引号为1
的位置:
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']
要删除list末尾的元素,用pop()
方法:
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']
要删除指定位置的元素,用pop(i)
方法,其中i
是索引位置:
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']
要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']
list里面的元素的数据类型也可以不同,比如:
>>> L = ['Apple', 123, True]
list元素也可以是另一个list,比如:
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4
要注意s
只有4个元素,其中s[2]
又是一个list,如果拆开写就更容易理解了:
>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']
要拿到'php'
可以写p[1]
或者s[2][1]
,因此s
可以看成是一个二维数组,类似的还有三维、四维……数组,不过很少用到。
如果一个list中一个元素也没有,就是一个空的list,它的长度为0:
>>> L = []
>>> len(L)
0
tuple
另一种有序列表叫元组:tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:
>>> classmates = ('Michael', 'Bob', 'Tracy')
现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0]
,classmates[-1]
,但不能赋值成另外的元素。
不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。
tuple的陷阱:当你定义一个tuple时,在定义的时候,tuple的元素就必须被确定下来,比如:
>>> t = (1, 2)
>>> t
(1, 2)
如果要定义一个空的tuple,可以写成()
:
>>> t = ()
>>> t
()
但是,要定义一个只有1个元素的tuple,如果你这么定义:
>>> t = (1)
>>> t
1
定义的不是tuple,是1
这个数!这是因为括号()
既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1
。
所以,只有1个元素的tuple定义时必须加一个逗号,
,来消除歧义:
>>> t = (1,)
>>> t
(1,)
Python在显示只有1个元素的tuple时,也会加一个逗号,
,以免你误解成数学计算意义上的括号。
最后来看一个“可变的”tuple:
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
这个tuple定义的时候有3个元素,分别是'a'
,'b'
和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?
别急,我们先看看定义的时候tuple包含的3个元素:
当我们把list的元素'A'
和'B'
修改为'X'
和'Y'
后,tuple变为:
表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a'
,就不能改成指向'b'
,指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!
理解了“指向不变”后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。
条件判断
if
语句的完整形式就是:
if <条件判断1>:
<执行1>
elif <条件判断2>:
<执行2>
elif <条件判断3>:
<执行3>
else:
<执行4>
if
语句执行有个特点,它是从上往下判断,如果在某个判断上是True
,把该判断对应的语句执行后,就忽略掉剩下的elif
和else
。
if
判断条件还可以简写,比如写:
if x:
print('True')
只要x
是非零数值、非空字符串、非空list等,就判断为True
,否则为False
。
模式匹配
当我们用if ... elif ... elif ... else ...
判断时,会写很长一串代码,可读性较差。
如果要针对某个变量匹配若干种情况,可以使用match
语句。
例如,某个学生的成绩只能是A
、B
、C
,用if
语句编写如下:
score = 'B'
if score == 'A':
print('score is A.')
elif score == 'B':
print('score is B.')
elif score == 'C':
print('score is C.')
else:
print('invalid score.')
如果用match
语句改写,则改写如下:
# -*- coding: utf-8 -*-
score = 'B'
match score:
case 'A':
print('score is A.')
case 'B':
print('score is B.')
case 'C':
print('score is C.')
case _: # _表示匹配到其他任何情况
print('score is ???.')
复杂匹配
match
语句除了可以匹配简单的单个值外,还可以匹配多个值、匹配一定范围,并且把匹配后的值绑定到变量:
# -*- coding: utf-8 -*-
age = 15
match age:
case x if x < 10:
print(f'< 10 years old: {x}')
case 10:
print('10 years old.')
case 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18:
print('11~18 years old.')
case 19:
print('19 years old.')
case _:
print('not sure.')
在上面这个示例中,第一个case x if x < 10
表示当age < 10
成立时匹配,且赋值给变量x
,第二个case 10
仅匹配单个值,第三个case 11|12|...|18
能匹配多个值,用|
分隔。
匹配列表
# -*- coding: utf-8 -*-
args = ['gcc', 'hello.c', 'world.c']
# args = ['clean']
# args = ['gcc']
match args:
# 如果仅出现gcc,报错:
case ['gcc']:
print('gcc: missing source file(s).')
# 出现gcc,且至少指定了一个文件:
case ['gcc', file1, *files]:
print('gcc compile: ' + file1 + ', ' + ', '.join(files))
# 仅出现clean:
case ['clean']:
print('clean')
case _:
print('invalid command.')
第一个case ['gcc']
表示列表仅有'gcc'
一个字符串,没有指定文件名,报错;
第二个case ['gcc', file1, *files]
表示列表第一个字符串是'gcc'
,第二个字符串绑定到变量file1
,后面的任意个字符串绑定到*files
(符号*
的作用将在函数的参数中讲解),它实际上表示至少指定一个文件;
第三个case ['clean']
表示列表仅有'clean'
一个字符串;
最后一个case _
表示其他所有情况。
循环
# -*- coding: utf-8 -*-
sum = 0
for x in range(101):
sum = sum + x
print(sum)
sum = 0
n = 99
while n > 0:
sum = sum + n
n = n - 2
print(sum)
break
在循环中,break
语句可以提前退出循环。例如,本来要循环打印1~100的数字:
n = 1
while n <= 100:
print(n)
n = n + 1
print('END')
上面的代码可以打印出1~100。
如果要提前结束循环,可以用break
语句:
n = 1
while n <= 100:
if n > 10: # 当n = 11时,条件满足,执行break语句
break # break语句会结束当前循环
print(n)
n = n + 1
print('END')
执行上面的代码可以看到,打印出1~10后,紧接着打印END
,程序结束。
continue
在循环过程中,也可以通过continue
语句,跳过当前的这次循环,直接开始下一次循环。
n = 0
while n < 10:
n = n + 1
print(n)
上面的程序可以打印出1~10。但是,如果我们想只打印奇数,可以用continue
语句跳过某些循环:
n = 0
while n < 10:
n = n + 1
if n % 2 == 0: # 如果n是偶数,执行continue语句
continue # continue语句会直接继续下一轮循环,后续的print()语句不会执行
print(n)
执行上面的代码可以看到,打印的不再是1~10,而是1,3,5,7,9。
可见continue
的作用是提前结束本轮循环,并直接开始下一轮循环。
dict和set
dict
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]
给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。
第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。
dict就是第二种实现方式,给定一个名字,比如'Michael'
,dict在内部就可以直接计算出Michael
对应的存放成绩的“页码”,也就是95
这个数字存放的内存地址,直接取出来,所以速度非常快。
你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。
把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:
>>> d['Adam'] = 67
>>> d['Adam']
67
由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88
如果key不存在,dict就会报错:
>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'
要避免key不存在的错误,有两种办法,一是通过in
判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get()
方法,如果key不存在,可以返回None
,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None
的时候Python的交互环境不显示结果。
要删除一个key,用pop(key)
方法,对应的value也会从dict中删除:
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
- 查找和插入的速度极快,不会随着key的增加而变慢;
- 需要占用大量的内存,内存浪费多。
而list相反:
- 查找和插入的时间随着元素的增加而增加;
- 占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。
这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。
要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
set
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}
注意,传入的参数[1, 2, 3]
是一个list,而显示的{1, 2, 3}
只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}
通过add(key)
方法可以添加元素到set中,可以重复添加,但不会有效果:
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}
通过remove(key)
方法可以删除元素:
>>> s.remove(4)
>>> s
{1, 2, 3}
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。
再议不可变对象
上面我们讲了,str是不变对象,而list是可变对象。
对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
而对于不可变对象,比如str,对str进行操作呢:
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
虽然字符串有个replace()
方法,也确实变出了'Abc'
,但变量a
最后仍是'abc'
,应该怎么理解呢?
我们先把代码改成下面这样:
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a
是变量,而'abc'
才是字符串对象!有些时候,我们经常说,对象a
的内容是'abc'
,但其实是指,a
本身是一个变量,它指向的对象的内容才是'abc'
:
┌───┐ ┌───────┐
│ a │─────────────────>│ 'abc' │
└───┘ └───────┘
当我们调用a.replace('a', 'A')
时,实际上调用方法replace
是作用在字符串对象'abc'
上的,而这个方法虽然名字叫replace
,但却没有改变字符串'abc'
的内容。相反,replace
方法创建了一个新字符串'Abc'
并返回,如果我们用变量b
指向该新字符串,就容易理解了,变量a
仍指向原有的字符串'abc'
,但变量b
却指向新字符串'Abc'
了:
┌───┐ ┌───────┐
│ a │─────────────────>│ 'abc' │
└───┘ └───────┘
┌───┐ ┌───────┐
│ b │─────────────────>│ 'Abc' │
└───┘ └───────┘
所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
标签:tuple,基础,list,字符串,dict,key,print,01Python From: https://www.cnblogs.com/qixinghaitang/p/18069128