首页 > 编程语言 >基于局部信息提取的人脸标志检测算法matlab仿真

基于局部信息提取的人脸标志检测算法matlab仿真

时间:2024-02-25 23:55:39浏览次数:29  
标签:信息提取 edge Lmk 人脸 matlab func Rmk Face

1.算法运行效果图预览

 

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

        基于局部信息提取的人脸标志检测算法是计算机视觉和图像处理领域的重要研究方向。该算法旨在从人脸图像中准确地检测和定位出一系列关键的特征点,这些特征点通常被称为人脸标志点。人脸标志点对于人脸识别、表情识别、人脸动画合成等众多应用具有至关重要的作用。

 

       基于局部信息提取的人脸标志检测算法主要依赖于对人脸图像中局部区域的精确分析和特征提取。算法的核心思想是利用人脸标志点周围的局部信息,通过一系列精心设计的特征描述符和机器学习算法来检测和定位人脸标志点。

 

3.1 人脸检测

        首先,算法需要对输入图像进行人脸检测,以确定人脸的大致位置和尺寸。这一步骤通常采用现有的人脸检测算法,如基于Haar特征的级联分类器、基于深度学习的人脸检测算法等。人脸检测的目的是为了缩小后续处理的搜索范围,提高算法的效率和准确性。

 

3.2 局部区域选择

        在检测到人脸后,算法需要在人脸区域内选择一系列可能包含标志点的局部区域。这些局部区域的选择通常基于人脸的先验知识,如人脸的对称性、五官的相对位置等。局部区域的选择对于后续的特征提取和标志点定位至关重要。

 

3.3 特征提取

       特征提取是基于局部信息提取的人脸标志检测算法的核心步骤。在这一步骤中,算法需要设计一系列特征描述符来提取局部区域的图像信息,以便后续的分类或回归处理。

 

        基于局部信息提取的人脸标志检测算法是实现人脸分析任务的重要一环。它通过提取和分析人脸图像中的局部特征来实现标志点的精确定位,为后续的人脸识别、表情分析等提供了基础。本文详细介绍了该算法的原理和数学公式,并探讨了其优化和改进的方法。

 

 

 

 

4.部分核心程序

%眼睛搜索
Face1        = imbinarize(Face,0.5);
Face_edge    = edge(Face1,'zerocross');
 
Face_Lmk     = func_Landmarks(I_Leye,Face_edge,1);
Face_Rmk     = func_Landmarks(I_Reye,Face_edge,1);
 
if(func_check(Face_Rmk) == false || func_check(Face_Lmk) == false)
    if ~func_check(Face_Lmk) && func_check(Face_Rmk) 
        Face_Lmk = func_mirror(Face_Rmk,Face_edge,1);
    elseif ~func_check(Face_Rmk)&&func_check(Face_Lmk)
        Face_Rmk = func_mirror(Face_Lmk,Face_edge,1);
    end
end
 
 
 
%嘴巴搜索
Face2        = imbinarize(Face,0.5);
Face_edge    = edge(Face2,'zerocross');
Face_morph   = bwareaopen(Face_edge,150);
Face_edge    = Face_edge-Face_morph;
mouth_mk     = func_Landmarks(I_mouth,Face_edge,2);
 
%眉毛搜索
Face3        = imbinarize(Face,0.5);
Face_edge    = edge(Face3,'zerocross');
Face_morph   = bwareaopen(Face_edge,150);
Face_edge    = Face_edge-Face_morph;
 
brow_Lmk     = func_Landmarks(I_Lbrow,Face_edge,3);
brow_Rmk     = func_Landmarks(I_Rbrow,Face_edge,3);
 
if func_check(brow_Lmk) == 0 
   brow_Lmk = func_mirror(brow_Rmk,Face_edge,2);
end
 
%显示标志
subplot(2,4,i);
imshow(Face);
hold on;
plot([brow_Rmk(:,1);brow_Rmk(1,1)],[brow_Rmk(:,2);brow_Rmk(1,2)],'g-o','MarkerSize',3);
hold on;
plot([brow_Lmk(:,1);brow_Lmk(1,1)],[brow_Lmk(:,2);brow_Lmk(1,2)],'g-o','MarkerSize',3);
hold on;
plot([Face_Rmk([1,3,2,4],1);Face_Rmk([1],1)],[Face_Rmk([1,3,2,4],2);Face_Rmk([1],2)],'y-o','MarkerSize',3);
hold on;
plot([Face_Lmk([1,3,2,4],1);Face_Lmk([1],1)],[Face_Lmk([1,3,2,4],2);Face_Lmk([1],2)],'y-o','MarkerSize',3);
hold on;
plot([mouth_mk([1,3,2,4],1);mouth_mk([1],1)],[mouth_mk([1,3,2,4],2);mouth_mk([1],2)],'r-o','MarkerSize',3);
 
end

  

标签:信息提取,edge,Lmk,人脸,matlab,func,Rmk,Face
From: https://www.cnblogs.com/matlabworld/p/18033373

相关文章

  • 基于Harris角点的多视角图像全景拼接算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.算法理论概述       基于Harris角点的多视角图像全景拼接算法是一种在计算机视觉和图像处理领域中广泛应用的算法,用于将来自不同视角的多个图像拼接成一个全景图像。该算法主要依赖于特征点检测和图像......
  • 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本MATLAB2022a 3.算法理论概述      近年来,深度学习在计算机视觉领域取得了显著成果,特别是在目标检测任务中。YOLO(YouOnlyLookOnce)系列算法作为其中的代表,以其高效和实时的性能受到广泛关注。YOLOv2,作为YOL......
  • 基于WIFI指纹的室内定位算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.算法理论概述        随着移动互联网和物联网技术的飞速发展,位置服务(LBS)已成为许多应用的核心功能,如导航、社交网络和智能物流等。室外定位技术,如全球定位系统(GPS),已相当成熟并广泛应用。然而,由于建......
  • m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要        随着人工智能技术的快速发展,人脸识别技术已经广泛应用于身份验证、安全监控、智能支付等领域。活体人脸和视频人脸识别系统是其中的重要分支,旨在通过深度学习网络对人脸进行高效、准确......
  • 根据星历文件实现卫星的动态运行模拟matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本MATLAB2022a  3.算法理论概述      卫星的动态跟踪捕获是航天工程和卫星通信领域中的关键技术之一。它涉及到对卫星轨道的精确预测、接收设备的指向控制以及信号处理等多个方面。       随着航天技术的不断......
  • 基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a 3.算法理论概述        三维室内场景建模在计算机视觉、机器人导航、虚拟现实等领域有广泛应用。传统的建模方法通常基于激光扫描仪或深度相机,但这些设备价格昂贵且不易普及。基于双目RGB图像和图像......
  • m基于码率兼容打孔LDPC码nms最小和译码算法的LDPC编译码matlab误码率仿真
    1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要       码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(BeliefPropagation)译码算法......
  • MATLAB替代
    ==Octave=============【介绍】Octave为GNU项目下的开源软件Octave是基于C++的STL开发的。由JohnW.Eaton在1992年接手开始系统性开发。第一个alpha测试版在1993年1月4日发布,1.0稳定版则是在1994年2月17日发布。【安装】https://octave.org/download.html【使用】启......
  • 基于yolov2深度学习网络的血细胞检测算法matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本MATLAB2022a 3.算法理论概述         血细胞检测是医学图像处理领域的重要任务之一,对于疾病的诊断和治疗具有重要意义。近年来,深度学习在医学图像处理领域取得了显著成果,尤其是目标检测算法在血细胞检测方面表现出......
  • 基于huffman编解码的图像压缩算法matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述       Huffman编码是一种用于无损数据压缩的熵编码算法。由DavidA.Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffm......