numpy-ml\numpy_ml\preprocessing\nlp.py
# 导入必要的库和模块
import re
import heapq
import os.path as op
from collections import Counter, OrderedDict, defaultdict
import numpy as np
# 定义英文停用词列表,来源于"Glasgow Information Retrieval Group"
_STOP_WORDS = set(
).split(" "),
)
# 定义用于匹配单词的正则表达式,用于分词
_WORD_REGEX = re.compile(r"(?u)\b\w\w+\b") # sklearn默认
_WORD_REGEX_W_PUNC = re.compile(r"(?u)\w+|[^a-zA-Z0-9\s]")
_WORD_REGEX_W_PUNC_AND_WHITESPACE = re.compile(r"(?u)s?\w+\s?|\s?[^a-zA-Z0-9\s]\s?")
# 定义用于匹配标点符号的正则表达式
_PUNC_BYTE_REGEX = re.compile(
r"(33|34|35|36|37|38|39|40|41|42|43|44|45|"
r"46|47|58|59|60|61|62|63|64|91|92|93|94|"
r"95|96|123|124|125|126)",
)
# 定义标点符号
_PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
# 创建用于去除标点符号的转换表
_PUNC_TABLE = str.maketrans("", "", _PUNCTUATION)
# 定义函数,返回指定长度的n-gram序列
def ngrams(sequence, N):
"""Return all `N`-grams of the elements in `sequence`"""
assert N >= 1
return list(zip(*[sequence[i:] for i in range(N)]))
# 定义函数,将字符串按空格分词,可选择是否转为小写、过滤停用词和标点符号
def tokenize_whitespace(
line, lowercase=True, filter_stopwords=True, filter_punctuation=True, **kwargs,
):
"""
Split a string at any whitespace characters, optionally removing
punctuation and stop-words in the process.
"""
line = line.lower() if lowercase else line
words = line.split()
line = [strip_punctuation(w) for w in words] if filter_punctuation else line
return remove_stop_words(words) if filter_stopwords else words
# 定义函数,将字符串按单词分词,可选择是否转为小写、过滤停用词和标点符号
def tokenize_words(
line, lowercase=True, filter_stopwords=True, filter_punctuation=True, **kwargs,
):
"""
Split a string into individual words, optionally removing punctuation and
stop-words in the process.
"""
REGEX = _WORD_REGEX if filter_punctuation else _WORD_REGEX_W_PUNC
words = REGEX.findall(line.lower() if lowercase else line)
return remove_stop_words(words) if filter_stopwords else words
# 定义函数,将字符串按字节分词
def tokenize_words_bytes(
line,
# 设置是否将文本转换为小写
lowercase=True,
# 设置是否过滤停用词
filter_stopwords=True,
# 设置是否过滤标点符号
filter_punctuation=True,
# 设置文本编码格式为 UTF-8
encoding="utf-8",
# **kwargs 表示接受任意数量的关键字参数,这些参数会被传递给函数的其他部分进行处理
**kwargs,
# 将字符串拆分为单词,并在此过程中选择性地删除标点符号和停用词。将每个单词转换为字节列表。
def tokenize_words(
line,
lowercase=lowercase,
filter_stopwords=filter_stopwords,
filter_punctuation=filter_punctuation,
**kwargs,
):
# 对单词进行分词处理,根据参数选择是否转换为小写、过滤停用词和标点符号
words = tokenize_words(
line,
lowercase=lowercase,
filter_stopwords=filter_stopwords,
filter_punctuation=filter_punctuation,
**kwargs,
)
# 将单词转换为字节列表,每个字节用空格分隔
words = [" ".join([str(i) for i in w.encode(encoding)]) for w in words]
# 返回字节列表
return words
# 将字符串中的字符转换为字节集合。每个字节用0到255之间的整数表示。
def tokenize_bytes_raw(line, encoding="utf-8", splitter=None, **kwargs):
# 将字符串中的字符编码为字节,每个字节用空格分隔
byte_str = [" ".join([str(i) for i in line.encode(encoding)])
# 如果指定了分隔符为标点符号,则在编码为字节之前在标点符号处进行分割
if splitter == "punctuation":
byte_str = _PUNC_BYTE_REGEX.sub(r"-\1-", byte_str[0]).split("-")
return byte_str
# 将字节(表示为0到255之间的整数)解码为指定编码的字符。
def bytes_to_chars(byte_list, encoding="utf-8"):
# 将字节列表中的整数转换为十六进制字符串
hex_array = [hex(a).replace("0x", "") for a in byte_list]
# 将十六进制字符串连接起来,并在需要时在前面补0
hex_array = " ".join([h if len(h) > 1 else f"0{h}" for h in hex_array])
# 将十六进制字符串转换为字节数组,再根据指定编码解码为字符
return bytearray.fromhex(hex_array).decode(encoding)
# 将字符串中的字符转换为小写,并根据参数选择是否过滤标点符号。
def tokenize_chars(line, lowercase=True, filter_punctuation=True, **kwargs):
# 将字符串拆分为单个字符,可选择在此过程中删除标点符号和停用词
"""
# 如果需要转换为小写,则将字符串转换为小写
line = line.lower() if lowercase else line
# 如果需要过滤标点符号,则调用函数去除标点符号
line = strip_punctuation(line) if filter_punctuation else line
# 使用正则表达式将连续多个空格替换为一个空格,并去除首尾空格,然后将结果转换为字符列表
chars = list(re.sub(" {2,}", " ", line).strip())
# 返回字符列表
return chars
# 从单词字符串列表中移除停用词
def remove_stop_words(words):
"""Remove stop words from a list of word strings"""
# 返回不在停用词列表中的单词
return [w for w in words if w.lower() not in _STOP_WORDS]
# 从字符串中移除标点符号
def strip_punctuation(line):
"""Remove punctuation from a string"""
# 使用_PUNC_TABLE来移除字符串中的标点符号,并去除首尾空格
return line.translate(_PUNC_TABLE).strip()
#######################################################################
# Byte-Pair Encoder #
#######################################################################
# 定义一个Byte-Pair编码器类
class BytePairEncoder(object):
def __init__(self, max_merges=3000, encoding="utf-8"):
"""
A byte-pair encoder for sub-word embeddings.
Notes
-----
Byte-pair encoding [1][2] is a compression algorithm that iteratively
replaces the most frequently ocurring byte pairs in a set of documents
with a new, single token. It has gained popularity as a preprocessing
step for many NLP tasks due to its simplicity and expressiveness: using
a base coebook of just 256 unique tokens (bytes), any string can be
encoded.
References
----------
.. [1] Gage, P. (1994). A new algorithm for data compression. *C
Users Journal, 12(2)*, 23–38.
.. [2] Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine
translation of rare words with subword units, *Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics,* 1715-1725.
Parameters
----------
max_merges : int
The maximum number of byte pair merges to perform during the
:meth:`fit` operation. Default is 3000.
encoding : str
The encoding scheme for the documents used to train the encoder.
Default is `'utf-8'`.
"""
# 初始化参数字典
self.parameters = {
"max_merges": max_merges,
"encoding": encoding,
}
# 初始化字节到标记和标记到字节的有序字典。字节以十进制表示为0到255之间的整数。
# 在255之前,标记和字节表示之间存在一对一的对应关系。
self.byte2token = OrderedDict({i: i for i in range(256)})
self.token2byte = OrderedDict({v: k for k, v in self.byte2token.items()})
# 在给定语料库上训练一个字节对编码表
def fit(self, corpus_fps, encoding="utf-8"):
"""
Train a byte pair codebook on a set of documents.
Parameters
----------
corpus_fps : str or list of strs
The filepath / list of filepaths for the document(s) to be used to
learn the byte pair codebook.
encoding : str
The text encoding for documents. Common entries are either 'utf-8'
(no header byte), or 'utf-8-sig' (header byte). Default is
'utf-8'.
"""
# 创建一个词汇表对象,用于存储字节对编码表
vocab = (
Vocabulary(
lowercase=False,
min_count=None,
max_tokens=None,
filter_stopwords=False,
filter_punctuation=False,
tokenizer="bytes",
)
# 在给定语料库上拟合词汇表
.fit(corpus_fps, encoding=encoding)
# 获取词汇表中的计数信息
.counts
)
# 迭代地合并跨文档中最常见的字节二元组
for _ in range(self.parameters["max_merges"]):
# 获取词汇表中的字节二元组计数信息
pair_counts = self._get_counts(vocab)
# 找到出现次数最多的字节二元组
most_common_bigram = max(pair_counts, key=pair_counts.get)
# 合并最常见的字节二元组到词汇表中
vocab = self._merge(most_common_bigram, vocab)
# 初始化一个空集合,用于存储字节标记
token_bytes = set()
# 遍历词汇表中的键
for k in vocab.keys():
# 将键按空格分割,筛选包含"-"的字节标记
token_bytes = token_bytes.union([w for w in k.split(" ") if "-" in w])
# 遍历字节标记集合
for i, t in enumerate(token_bytes):
# 将字节标记转换为元组形式
byte_tuple = tuple(int(j) for j in t.split("-"))
# 将字节标记映射到对应的标记索引
self.token2byte[256 + i] = byte_tuple
# 将字节标记索引映射到对应的字节标记
self.byte2token[byte_tuple] = 256 + i
# 返回当前对象
return self
# 获取词汇表中的字节二元组计数信息
def _get_counts(self, vocab):
"""Collect bigram counts for the tokens in vocab"""
# 初始化一个默认字典,用于存储字节二元组计数
pair_counts = defaultdict(int)
# 遍历词汇表中的单词和计数信息
for word, count in vocab.items():
# 生成单词的二元组
pairs = ngrams(word.split(" "), 2)
# 遍历单词的二元组
for p in pairs:
# 更新字节二元组计数信息
pair_counts[p] += count
# 返回字节二元组计数信息
return pair_counts
# 将给定的二元组替换为单个标记,并相应更新词汇表
def _merge(self, bigram, vocab):
v_out = {}
# 转义二元组中的单词,用于正则表达式匹配
bg = re.escape(" ".join(bigram))
# 创建匹配二元组的正则表达式
bigram_regex = re.compile(r"(?<!\S)" + bg + r"(?!\S)")
# 遍历词汇表中的单词
for word in vocab.keys():
# 将匹配到的二元组替换为连接符"-"
w_out = bigram_regex.sub("-".join(bigram), word)
v_out[w_out] = vocab[word]
return v_out
# 将文本中的单词转换为其字节对编码的标记ID
def transform(self, text):
"""
Transform the words in `text` into their byte pair encoded token IDs.
Parameters
----------
text: str or list of `N` strings
The list of strings to encode
Returns
-------
codes : list of `N` lists
A list of byte pair token IDs for each of the `N` strings in
`text`.
Examples
--------
>>> B = BytePairEncoder(max_merges=100).fit("./example.txt")
>>> encoded_tokens = B.transform("Hello! How are you
标签:episode,self,源码,np,NumPyML,解析,grad,obs,def
From: https://www.cnblogs.com/apachecn/p/18017417