首页 > 编程语言 >Sentinel 源码分析-限流原理

Sentinel 源码分析-限流原理

时间:2022-08-14 11:13:09浏览次数:68  
标签:node count sentinel resourceWrapper 限流 context Sentinel entry 源码

1. git clone senetinel 源码到本地,切换到release1.8分支

2. 找到FlowQpsDemo.java, 根据sentinel自带的案例来学习sentinel的原理

3. 先看main方法

    public static void main(String[] args) throws Exception {
        initFlowQpsRule();

        //tick();
        // first make the system run on a very low condition
        simulateTraffic();

        System.out.println("===== begin to do flow control");
        System.out.println("only 20 requests per second can pass");

    }
这里首先初始化了限流规则,然后是调用模拟流量,先看initFlowQpsRule
    private static void initFlowQpsRule() {
        List<FlowRule> rules = new ArrayList<FlowRule>();
        FlowRule rule1 = new FlowRule();
        rule1.setResource(KEY);
        // set limit qps to 20
        rule1.setCount(20);
        rule1.setGrade(RuleConstant.FLOW_GRADE_QPS);
        rule1.setLimitApp("default");
        rules.add(rule1);
        FlowRuleManager.loadRules(rules);
    }

这里通过设置 资源名称 和他对应的rule来绑定他们之间的映射关系,完成初始化,全局唯一

4. 再看simulateTraffic

private static void simulateTraffic() {
        for (int i = 0; i < threadCount; i++) {
            Thread t = new Thread(new RunTask());
            t.setName("simulate-traffic-Task");
            t.start();
        }
    }
这里启动了多条线程,来执行RunTask,runTask内部开始使用到了sentinel的API
static class RunTask implements Runnable {
        @Override
        public void run() {
            while (!stop) {
                Entry entry = null;

                try {
                    entry = SphU.entry(KEY);
                    // token acquired, means pass
                   ....
                } catch (BlockException e1) {
                    block.incrementAndGet();
                } catch (Exception e2) {
                    // biz exception
                } finally {
                    ...
                    if (entry != null) {
                        entry.exit();
                    }
                }
				....
            }
        }
    }
在调用SphU.entry(KEY)时,会调用sentinel的规则调用链,来计算是否可以允许执行后面的步骤,如果不允许,将直接抛出异常,如果是触发限流,将会抛出BlockException

通过debug 可以看到如下流程图:

image

从流程图可以看出,核心是entryWithPriority

    private Entry entryWithPriority(ResourceWrapper resourceWrapper, int count, boolean prioritized, Object... args)
        throws BlockException {
        Context context = ContextUtil.getContext();
        if (context instanceof NullContext) {
            // The {@link NullContext} indicates that the amount of context has exceeded the threshold,
            // so here init the entry only. No rule checking will be done.
            return new CtEntry(resourceWrapper, null, context);
        }

        if (context == null) {
            // Using default context.
            context = InternalContextUtil.internalEnter(Constants.CONTEXT_DEFAULT_NAME);
        }

        // Global switch is close, no rule checking will do.
        if (!Constants.ON) {
            return new CtEntry(resourceWrapper, null, context);
        }

		// 创建调用链,一个资源名称绑定同一个调用链
        ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);

        /*
         * Means amount of resources (slot chain) exceeds {@link Constants.MAX_SLOT_CHAIN_SIZE},
         * so no rule checking will be done.
         */
        if (chain == null) {
            return new CtEntry(resourceWrapper, null, context);
        }

        Entry e = new CtEntry(resourceWrapper, chain, context);
        try {
			// 核心函数
            chain.entry(context, resourceWrapper, null, count, prioritized, args);
        } catch (BlockException e1) {
            e.exit(count, args);
            throw e1;
        } catch (Throwable e1) {
            // This should not happen, unless there are errors existing in Sentinel internal.
            RecordLog.info("Sentinel unexpected exception", e1);
        }
        return e;
    }
创建调用链就是去读取resource文件/resources/META-INF/services/com.alibaba.csp.sentinel.slotchain.ProcessorSlot,通过反射获得对象链
# Sentinel default ProcessorSlots
com.alibaba.csp.sentinel.slots.nodeselector.NodeSelectorSlot
com.alibaba.csp.sentinel.slots.clusterbuilder.ClusterBuilderSlot
com.alibaba.csp.sentinel.slots.logger.LogSlot
com.alibaba.csp.sentinel.slots.statistic.StatisticSlot
com.alibaba.csp.sentinel.slots.block.authority.AuthoritySlot
com.alibaba.csp.sentinel.slots.system.SystemSlot
com.alibaba.csp.sentinel.slots.block.flow.FlowSlot
com.alibaba.csp.sentinel.slots.block.degrade.DegradeSlot
其中限流我们主要关注 StatisticSlotFlowSlot,StatisticSlot用于统计在单位统计时间内的流量情况,FlowSlot用于根据rule 和流量情况判断是否运行通行
先看FlowSlot的源码,调用链会调用到他的entry方法
    @Override
    public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                      boolean prioritized, Object... args) throws Throwable {
		//这里检查是否可通行,不可将抛出异常,不往下走了

        checkFlow(resourceWrapper, context, node, count, prioritized);

        fireEntry(context, resourceWrapper, node, count, prioritized, args);
    }

    void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
        throws BlockException {
        checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
    }

image

由流程图克制,最终是调用DefaultController.canPass来判断

    @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        int curCount = avgUsedTokens(node);
        if (curCount + acquireCount > count) {
            if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
                long currentTime;
                long waitInMs;
                currentTime = TimeUtil.currentTimeMillis();
                waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
                if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
                    node.addWaitingRequest(currentTime + waitInMs, acquireCount);
                    node.addOccupiedPass(acquireCount);
                    sleep(waitInMs);

                    // PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
                    throw new PriorityWaitException(waitInMs);
                }
            }
            return false;
        }
        return true;
    }

    private int avgUsedTokens(Node node) {
        if (node == null) {
            return DEFAULT_AVG_USED_TOKENS;
        }
        return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
    }
	

通过avgUsedToken访问node(这里debug可知是ClusterNode,因为是default模式),去拿statisticsNode逻辑中缓存在node中的Qps数据,即单位时长内的流量值;这里面有一个重要的数据结构LeapArray<MetricBucket> , 是sentinel设计的一个 环形数组用于流量统计,将在下节讲解

到此FlowSlot的统计流程就讲解完毕,即每个请求进来,成功后都会缓存在对应的Node中进行计数,在FlowSlot中判断单位时间内是否已达到上限,达到则抛出异常,阻止继续向下,(或者调用配置好的handler执行)

标签:node,count,sentinel,resourceWrapper,限流,context,Sentinel,entry,源码
From: https://www.cnblogs.com/gradyblog/p/16584923.html

相关文章