首页 > 编程语言 >python client of influxdb v2

python client of influxdb v2

时间:2024-01-14 17:47:22浏览次数:42  
标签:python gui list AI v2 client query my decimal

python client

https://docs.influxdata.com/influxdb/v2/api-guide/tutorials/python/#authenticate-with-an-influxdb-api-token

Follow this step-by-step tutorial to build an Internet-of-Things (IoT) application with InfluxData client libraries and your favorite framework or language.

In this tutorial, you’ll use the InfluxDB API and client libraries to build a modern application as you learn the following:

  • InfluxDB core concepts.

  • How the application interacts with devices and InfluxDB.

  • How to authenticate apps and devices to the API.

  • How to install a client library.

  • How to write and query data in InfluxDB.

  • How to use the InfluxData UI libraries to format data and create visualizations.

 

Official Client Example

https://github.com/influxdata/influxdb-client-python/blob/master/examples/query.py

import datetime as datetime

from influxdb_client import InfluxDBClient, Point, Dialect
from influxdb_client.client.write_api import SYNCHRONOUS

with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=False) as client:

    write_api = client.write_api(write_options=SYNCHRONOUS)

    """
    Prepare data
    """
    _point1 = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
    _point2 = Point("my_measurement").tag("location", "New York").field("temperature", 24.3)
    write_api.write(bucket="my-bucket", record=[_point1, _point2])

    query_api = client.query_api()

    """
    Query: using Table structure
    """
    tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)')

    for table in tables:
        print(table)
        for record in table.records:
            print(record.values)

    print()
    print()

    """
    Query: using Bind parameters
    """

    p = {"_start": datetime.timedelta(hours=-1),
         "_location": "Prague",
         "_desc": True,
         "_floatParam": 25.1,
         "_every": datetime.timedelta(minutes=5)
         }

    tables = query_api.query('''
        from(bucket:"my-bucket") |> range(start: _start)
            |> filter(fn: (r) => r["_measurement"] == "my_measurement")
            |> filter(fn: (r) => r["_field"] == "temperature")
            |> filter(fn: (r) => r["location"] == _location and r["_value"] > _floatParam)
            |> aggregateWindow(every: _every, fn: mean, createEmpty: true)        
            |> sort(columns: ["_time"], desc: _desc) 
    ''', params=p)

    for table in tables:
        print(table)
        for record in table.records:
            print(str(record["_time"]) + " - " + record["location"] + ": " + str(record["_value"]))

    print()
    print()

    """
    Query: using Stream
    """
    records = query_api.query_stream('''
    from(bucket:"my-bucket") 
        |> range(start: -10m)  
        |> filter(fn: (r) => r["_measurement"] == "my_measurement")
    ''')

    for record in records:
        print(f'Temperature in {record["location"]} is {record["_value"]}')

    """
    Interrupt a stream after retrieve a required data
    """
    large_stream = query_api.query_stream('''
    from(bucket:"my-bucket") 
        |> range(start: -100d) 
        |> filter(fn: (r) => r["_measurement"] == "my_measurement")
    ''')

    for record in large_stream:
        if record["location"] == "New York":
            print(f'New York temperature: {record["_value"]}')
            break

    large_stream.close()

    print()
    print()

    """
    Query: using csv library
    """
    csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)',
                                     dialect=Dialect(header=False, delimiter=",", comment_prefix="#", annotations=[],
                                                     date_time_format="RFC3339"))
    for csv_line in csv_result:
        print(f'Temperature in {csv_line[9]} is {csv_line[6]}')

    print()
    print()

    """
    Query: using Pandas DataFrame
    """
    data_frame = query_api.query_data_frame('''
    from(bucket:"my-bucket") 
        |> range(start: -10m) 
        |> filter(fn: (r) => r["_measurement"] == "my_measurement")
        |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
        |> keep(columns: ["_time","location", "temperature"])
    ''')
    print(data_frame.to_string())

 

其它丰富的示例:

https://github.com/influxdata/influxdb-client-python/tree/master/examples

 

python client API

https://influxdb-client.readthedocs.io/en/stable/usage.html#query

from influxdb_client import InfluxDBClient, Point
from influxdb_client.client.write_api import SYNCHRONOUS

bucket = "my-bucket"

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")

write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()

p = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)

write_api.write(bucket=bucket, record=p)

## using Table structure
tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)')

for table in tables:
    print(table)
    for row in table.records:
        print (row.values)


## using csv library
csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)')
val_count = 0
for row in csv_result:
    for cell in row:
        val_count += 1

 

pandas dataframe <--> InfluxDB

https://www.influxdata.com/blog/getting-started-with-influxdb-and-pandas/

Import the client and Pandas:

from influxdb_client import InfluxDBClient
import pandas as pd
Copy

Supply auth parameters:

my_token = my-token
my_org = "my-org"
bucket = "system"
Copy

Write your Flux query:

query= '''
from(bucket: "system")
|> range(start:-5m, stop: now())
|> filter(fn: (r) => r._measurement == "cpu")
|> filter(fn: (r) => r._field == "usage_user")
|> filter(fn: (r) => r.cpu == "cpu-total")'''
Copy

Query InfluxDB and return a Dataframe:

client = InfluxDBClient(url="http://localhost:9999", token=my_token, org=my_org, debug=False)
system_stats = client.query_api().query_data_frame(org=my_org, query=query)
display(system_stats.head())

 

influxDB to dataframe with pivot API

https://blog.csdn.net/weixin_34890916/article/details/123251449

    with InfluxDBClient(url=dbconf.HOST, token=dbconf.TOKEN, org=dbconf.ORG, debug=False) as client:
        global stopstamp,startstamp
        startstamp, stopstamp = dbconf.getlocaltime()
        query_api = client.query_api()
        query_str = 'import "timezone" option location = timezone.location(name: "Asia/Shanghai") '
        query_str += 'from(bucket: "' + dbconf.BUCKET + '")'
        query_str += ' |> range(start: ' + \
                     str(startstamp) + ', stop: ' + str(stopstamp) + ') '
        query_str += '|> filter(fn: (r) => r["_measurement"] == "' + \
                     dbconf.MEASUREMENTONE + '")'
        query_str += '|> filter(fn: (r) => r["_field"] == "RotateSpeed2_decimal" or  r["_field"] == "RotateSpeed1_decimal" or  r["_field"] == "Torque_decimal" or  r["_field"] == "EnvironmentTemp_decimal" or  r["_field"]  == "Mot2_speed_rpm_gui_int" or  r["_field"] == "AI_PhaseWCurrent2_gui_decimal" or  r["_field"] == "AI_PhaseWCurrent2_RMS_gui_decimal" or  r["_field"] == "AI_PhaseUCurrent2_RMS_gui_decimal" or  r["_field"] == "AI_PhaseUCurrent2_gui_decimal" or  r["_field"] == "AI_BusNegCurrent_gui_decimal" or r["_field"]== "AI_Motor2Temp1_gui_decimal")'
        query_str += '|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")'
        query_str += '|> yield()'
        print(query_str)
        tables = query_api.query(query_str, org=dbconf.ORG)
        data = pd.DataFrame()
        list_time = []
        RotateSpeed2_decimal_list = []
        RotateSpeed1_decimal_list = []
        Torque_decimal_list = []
        EnvironmentTemp_decimal_list = []
        Mot2_speed_rpm_gui_int_list = []
        AI_PhaseWCurrent2_gui_decimal_list = []
        AI_PhaseWCurrent2_RMS_gui_decimal_list = []
        AI_PhaseUCurrent2_RMS_gui_decimal_list = []
        AI_PhaseUCurrent2_gui_decimal_list = []
        AI_BusNegCurrent_gui_decimal_list = []
        AI_Motor2Temp1_gui_decimal_list = []
        for table in tables:
            for row in table.records:
                list_time.append(row.__getitem__(
                    '_time').strftime('%Y-%m-%dT%H:%M:%S.%fZ'))
                RotateSpeed2_decimal_list.append(
                    row.__getitem__('RotateSpeed2_decimal'))
                RotateSpeed1_decimal_list.append(
                    row.__getitem__('RotateSpeed1_decimal'))
                Torque_decimal_list.append(row.__getitem__('Torque_decimal'))
                EnvironmentTemp_decimal_list.append(
                    row.__getitem__('EnvironmentTemp_decimal'))
                Mot2_speed_rpm_gui_int_list.append(
                    row.__getitem__('Mot2_speed_rpm_gui_int'))
                AI_PhaseWCurrent2_gui_decimal_list.append(
                    row.__getitem__('AI_PhaseWCurrent2_gui_decimal'))
                AI_PhaseWCurrent2_RMS_gui_decimal_list.append(
                    row.__getitem__('AI_PhaseWCurrent2_RMS_gui_decimal'))
                AI_PhaseUCurrent2_RMS_gui_decimal_list.append(
                    row.__getitem__('AI_PhaseUCurrent2_RMS_gui_decimal'))
                AI_PhaseUCurrent2_gui_decimal_list.append(
                    row.__getitem__('AI_PhaseUCurrent2_gui_decimal'))
                AI_BusNegCurrent_gui_decimal_list.append(
                    row.__getitem__('AI_BusNegCurrent_gui_decimal'))
                AI_Motor2Temp1_gui_decimal_list.append(
                    row.__getitem__('AI_Motor2Temp1_gui_decimal'))
        data['time'] = list_time
        data['RotateSpeed2_decimal'] = RotateSpeed2_decimal_list
        data['RotateSpeed1_decimal'] = RotateSpeed1_decimal_list
        data['Torque_decimal'] = Torque_decimal_list
        data['EnvironmentTemp_decimal'] = EnvironmentTemp_decimal_list
        data['Mot2_speed_rpm_gui_int'] = Mot2_speed_rpm_gui_int_list
        data['AI_PhaseWCurrent2_gui_decimal'] = AI_PhaseWCurrent2_gui_decimal_list
        data['AI_PhaseWCurrent2_RMS_gui_decimal'] = AI_PhaseWCurrent2_RMS_gui_decimal_list
        data['AI_PhaseUCurrent2_RMS_gui_decimal'] = AI_PhaseUCurrent2_RMS_gui_decimal_list
        data['AI_PhaseUCurrent2_gui_decimal'] = AI_PhaseUCurrent2_gui_decimal_list
        data['AI_BusNegCurrent_gui_decimal'] = AI_BusNegCurrent_gui_decimal_list
        data['AI_Motor2Temp1_gui_decimal'] = AI_Motor2Temp1_gui_decimal_list

 

标签:python,gui,list,AI,v2,client,query,my,decimal
From: https://www.cnblogs.com/lightsong/p/17963943

相关文章

  • Python面向对象之反射
    反射【一】什么是反射反射是一种程序可以访问、检测和修改其本身状态或行为的能力。在Python中,反射主要指通过字符串的形式操作对象的属性。【二】Python中的反射通过字符串的形式操作对象相关的属性。python中的一切事物都是对象(都可以使用反射)【三】反射方法class......
  • different python version + venv
    ubuntu系统上安装不同python版本https://www.bandwagonhost.net/7309.html比如安装Python3.7:sudoaptinstallpython3.7或者安装Python3.6:sudoaptinstallpython3.6安装之后,我们就可以使用Python对应版本了,比如看一下Python3.7的具体版本:python3.7-V构造应......
  • python二分法查找
    比如要在列表arr中查找xdeff(arr,x):left=0right=len(arr)whileleft<right:mid=(left+right)//2ifmid<x:left=midelifmid>x:right=midelse:returnmid......
  • client-go连接数
    单节点k8s集群v1.19.0client-go用于访问kube-apiserver,可以list/watchk8s资源。组件名称访问kube-apiserver方式单个实例的https连接数kube-scheduler本机ip2kube-controller-manager本机ip2corednsserviceclusterip1kube-......
  • [Python急救站]学生管理系统链接数据库
    相信很多人在初学Python的时候,经常最后作业就是完成一个学生管理系统,但是我们来做一个完美的学生管理系统,并且将数据储存到数据库里。我们先看看我们的数据库怎么设置。首先呢,我选择用的是SQLServer然后,我们的数据库名称为学生管理系统 接着,新建一张表,我设置表的名称为学生......
  • CF-1920-div2 总结
    1.结果赛时做出:AB(D)赛后做出:CD评分变化:1535->1500rank:45212.赛后总结>1个人评价这次比赛是我寒假的第一次,昨天坐了一天的动车,虽然平稳,但还是有晕车,导致晚上状态不好,个人因素还是有的。最主要的因素还是后一个小时太晕了,D题有个小问题没发现。除此之外,近期开始服用的药物让......
  • Python3环境安装
    Ubuntu下自带Python。python3-Vpython3--versionPython3.10.12sudoapt-getinstallpython3-pippip -Vpip3--versionpip22.0.2from/usr/lib/python3/dist-packages/pip(python3.10)sudoaptinstallpython3.10-venvpython3-mvenvmyenvsourcemyenv/bin/activ......
  • Python Flask Class类默认方法(函数)
    前言全局说明Class类默认方法(函数)一、安装flask模块二、引用模块三、启动服务模块安装、引用模块、启动Web服务方法,参考下面链接文章:https://www.cnblogs.com/wutou/p/17963563四、Class类默认方法(函数)默认方法(函数)说明备注init类被调用后,自动执行......
  • Python Flask 模块安装、引用模块、启动Web服务方法
    前言全局说明模块安装、引用模块、启动服务一、安装flask模块官方源:pip3installflask==2.3.2国内源:pip3installflask==2.3.2-ihttp://pypi.douban.com/simple/--trusted-hostpypi.douban.com以上二选一,哪个安装快用哪个flask安装时间2023-11更多国内源:......
  • Python教程(24)——全方位解析Python中的装饰器
    Python装饰器是一种特殊的函数,它接收一个函数作为参数,然后返回一个新的函数,用于扩展或修改原始函数的行为。装饰器提供了一种便捷的方式来在不修改被装饰函数源代码的情况下,增加、修改或包装函数的功能。通俗点说就是尽量不修改原有功能代码的情况下,给原有的功能添加新的功能。装......