一键抠图1:Python实现人像抠图 (Portrait Matting)
目录
一键抠图1:Python实现人像抠图 (Portrait Matting)
1. 项目介绍
2. 抠图算法
3. Matting数据集
4. MODNet模型
(1) 项目安装
(2) 数据集说明
(3) MODNet模型
5. Demo测试效果
6. 源码下载(Python)
7.人像抠图C++版本
8.人像抠图Android版本
1. 项目介绍
抠图算法(英文中,一般称为Matting)有多种实现方式,一种是基于辅助信息输入的,加入一些先验信息(如Trimap,背景图,用户交互信息,深度等信息)提供抠图效果,如比较经典的Deep Image Matting和Semantic Image Matting这些算法加入Trimap; Background Matting算法需要提供背景图等;另一种是无需辅助信息,输入RGB图像,直接预测matte的方法,其效果相对第一种方法,会差很多。而对Portrait Matting(人像抠图),现在有很多方案在无需Trimap条件下,也可以获得不错的抠图效果,比如MODNet,Fast Deep Matting等算法,真正实现一健抠图的效果。
本篇博客是一键抠图项目系列之《Python实现人像抠图 (Portrait Matting)》,项目将在MODNet人像抠图算法基础上进行模型压缩和优化,开发一个效果相当不错的Matting算法,可以达到头发细致级别的人像抠图效果,为了方便后续模型工程化和Android平台部署,项目提供高精度版本人像抠图和轻量化快速版人像抠图,并提供Python/C++/Android多个版本;
【尊重原创,转载请注明出处】
Android Demo APP下载地址:
先展示一下一键人像抠图效果:
更多项目《一键抠图》系列文章请参考:
- 一键抠图1:Python实现人像抠图 (Portrait Matting)
- 一键抠图2:C/C++实现人像抠图 (Portrait Matting)
- 一键抠图3:Android实现人像抠图 (Portrait Matting)
2. 抠图算法
基于深度学习的Matting分为两大类:
- 一种是基于辅助信息输入。即除了原图和标注图像外,还需要输入其他的信息辅助预测。最常见的辅助信息是Trimap,即将图片划分为前景,背景及过度区域三部分。另外也有以背景或交互点作为辅助信息。
- 一种是不依赖任何辅助信息,直接对Alpha进行预测。如本博客复现的MODNet
第一种方法,需要加入辅助信息,而辅助信息一般较难获取,这也限制其应用,为了提升Matting的应用性,针对Portrait Matting领域MODNet摒弃了辅助信息,直接实现Alpha预测,实现了实时Matting,极大提升了基于深度学习Matting的应用价值。
更多抠图算法(Matting),请参考我的一篇博客《图像抠图Image Matting算法调研》:
搞不清楚分割(segmentation)和抠图(matting)有什么区别,我这里简单说明一下:
- 分割(segmentation):从深度学习的角度来说,分割本质是像素级别的分类任务,其损失函数最简单的莫过于是交叉熵CrossEntropyLoss(当然也可以是Focal Loss,IOU Loss,Dice Loss等);对于前景和背景分割任务,输出Mask的每个像素要么是0,要么是1。如果拿去直接做图像融合,就很不自然,Mask边界很生硬,这时就需要使用抠图算法了
- 抠图(matting): 而抠图本质是一种回归任务,其损失函数可以是MSE Loss,L1 Loss,L2 Loss等,对于前景和背景抠图任务,输出Mask的每个像素是0~1之间的连续值,可看作是对图像透明通道(Alpha)的回归预测。可以用公式表示为C = αF + (1-α)B ,其中α(不透明度)、F(前景色)和B(背景色),alpha是[0, 1]之间的连续值,可以理解为像素属于前景的概率。在人像分割任务中,alpha只能取0或1,而抠图任务中,alpha可取[0, 1]之间的连续值,
- 本质上就是一句话:分割是分类任务,而抠图是回归任务。
3. Matting数据集
一些开源的matting数据集
数据集 | 说明 |
| |
Deep Image Matting |
|
PPM-100下载:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/Matting | |
RealWorldPortrait-636 | |
Compsition-1k |
|
| |
| |
VideoMatte240K | |
PhotoMatte85 |
其他的:
- VideoMatte240K
- PhotoMatte85
- GitHub - thuyngch/Human-Segmentation-PyTorch: Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
- Automatic Portrait Segmentation for Image Stylization: 1800 images
- Supervisely Person: 5711 images
4. MODNet模型
(1) 项目安装
整套工程项目基本结构如下:
推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题, 项目依赖python包请参考requirements.txt,使用pip安装即可:
numpy==1.21.6
matplotlib==3.2.2
Pillow==8.4.0
bcolz==1.2.1
easydict==1.9
onnx==1.8.1
onnx-simplifier==0.2.28
onnxoptimizer==0.2.0
onnxruntime==1.6.0
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
sklearn==0.0
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
pycocotools==2.0.2
pybaseutils==0.9.4
basetrainer
项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):
- 项目开发使用教程和常见问题和解决方法
- 视频教程:1 手把手教你安装CUDA和cuDNN(1)
- 视频教程:2 手把手教你安装CUDA和cuDNN(2)
- 视频教程:3 如何用Anaconda创建pycharm环境
- 视频教程:4 如何在pycharm中使用Anaconda创建的python环境
- 推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题
(2) 数据集说明
关于训练数据如何生成的问题:
- 原论文MODNet使用了PPM-100数据集+私有的数据集,并合成了大部分训练数据
- 鄙人复现时,先使用matting_human_datasets数据集训练base-model当作pretrained模型;然后合并多个数据集(PPM-100 + RealWorldPortrait-636 + Deep Image Matting),采用背景图来自VOC+COCO+BG-20k ,一共合成了5W+的训练数据和500+的测试数据
- 合成的方法有两种:方法1:利用公式:合成图 = 前景*alpha+背景*(1-alpha) ;方法二:前景+mask+背景通过GAN生成;
这是Python实现的背景合成,需要提供原始图像image,以及image的前景图像alpha,和需要合成的背景图像bg_img:
def image_fusion(image: np.ndarray, alpha: np.ndarray, bg_img=(219, 142, 67)):
"""
图像融合:合成图 = 前景*alpha+背景*(1-alpha)
:param image: RGB图像(uint8)
:param alpha: 单通道的alpha图像(uint8)
:param bg_img: 背景图像,可以是任意的分辨率图像,也可以指定指定纯色的背景
:return: 返回与背景合成的图像
"""
if isinstance(bg_img, tuple) or isinstance(bg_img, list):
bg = np.zeros_like(image, dtype=np.uint8)
bg_img = np.asarray(bg[:, :, 0:3] + bg_img, dtype=np.uint8)
if len(alpha.shape) == 2:
# alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR)
alpha = alpha[:, :, np.newaxis]
if alpha.dtype == np.uint8:
alpha = np.asarray(alpha / 255.0, dtype=np.float32)
sh, sw, d = image.shape
bh, bw, d = bg_img.shape
ratio = [sw / bw, sh / bh]
ratio = max(ratio)
if ratio > 1:
bg_img = cv2.resize(bg_img, dsize=(math.ceil(bw * ratio), math.ceil(bh * ratio)))
bg_img = bg_img[0: sh, 0: sw]
image = image * alpha + bg_img * (1 - alpha)
image = np.asarray(np.clip(image, 0, 255), dtype=np.uint8)
return image
当然,为了方便JNI调用,我这里还实现C++版本图像合成算法,这部分图像处理的基本工具,都放在我的base-utils中
/***
* 实现图像融合:out = imgBGR * matte + bg * (1 - matte)
* Fix a Bug: 1-alpha实质上仅有B通道参与计算,多通道时(B,G,R),需改Scalar(1.0, 1.0, 1.0)-alpha
* @param imgBGR 输入原始图像
* @param matte 输入原始图像的Mask,或者alpha,matte
* @param out 输出融合图像
* @param bg 输入背景图像Mat(可任意大小),也可以通过Scalar指定纯色的背景
*/
void image_fusion(cv::Mat &imgBGR, cv::Mat matte, cv::Mat &out, cv::Mat bg) {
assert(matte.channels() == 1);
out.create(imgBGR.size(), CV_8UC3);
vector<float> ratio{(float) imgBGR.cols / bg.cols, (float) imgBGR.rows / bg.rows};
float max_ratio = *max_element(ratio.begin(), ratio.end());
if (max_ratio > 1.0) {
cv::resize(bg, bg, cv::Size(int(bg.cols * max_ratio), int(bg.rows * max_ratio)));
}
bg = image_center_crop(bg, imgBGR.cols, imgBGR.rows);
int n = imgBGR.channels();
int h = imgBGR.rows;
int w = imgBGR.cols * n;
// 循环体外进行乘法和除法运算
matte.convertTo(matte, CV_32FC1, 1.0 / 255, 0);
for (int i = 0; i < h; ++i) {
uchar *sptr = imgBGR.ptr<uchar>(i);
uchar *dptr = out.ptr<uchar>(i);
float *mptr = matte.ptr<float>(i);
uchar *bptr = bg.ptr<uchar>(i);
for (int j = 0; j < w; j += n) {
//float alpha = mptr[j] / 255; //循环体尽量减少乘法和除法运算
float alpha = mptr[j / 3];
float _alpha = 1.f - alpha;
dptr[j] = uchar(sptr[j] * alpha + bptr[j] * _alpha);
dptr[j + 1] = uchar(sptr[j + 1] * alpha + bptr[j + 1] * _alpha);
dptr[j + 2] = uchar(sptr[j + 2] * alpha + bptr[j + 2] * _alpha);
}
}
}
(3) MODNet模型
本文主要在MODNet人像抠图算法基础上进行模型压缩和优化,关于《MODNet: Trimap-Free Portrait Matting in Real Time》,请参考:
- Paper: https://arxiv.org/pdf/2011.11961.pdf
- 官方Github: GitHub - ZHKKKe/MODNet: A Trimap-Free Solution for Portrait Matting in Real Time
MODNet模型学习分为三个部分,分别为:语义部分(S),细节部分(D)和融合部分(F)。
- 在语义估计中,对high-level的特征结果进行监督学习,标签使用的是下采样及高斯模糊后的GT,损失函数用的L2-Loss,用L2loss应该可以学到更soft的语义特征;
- 在细节预测中,结合了输入图像的信息和语义部分的输出特征,通过encoder-decoder对人像边缘进行单独地约束学习,用的是交叉熵损失函数。为了减小计算量,encoder-decoder结构较为shallow,同时处理的是原图下采样后的尺度。
- 在融合部分,把语义输出和细节输出结果拼起来后得到最终的alpha结果,这部分约束用的是L1损失函数。
官方GitHub仅仅放出推理代码,并未提供训练代码和数据处理代码
- 复现Pytorch版本的MODNet训练过程和数据处理
- 增加了数据增强方法:如多尺度随机裁剪,Mosaic(拼图),随机背景融合等方法,提高模型泛化性
- 对MODNet骨干网络backbone进行轻量化,减少计算量
- 模型压缩,目前提供三个版本:高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5
- 转写模型推理过程,实现C++版本人像抠图算法
- 实现Android版本人像抠图算法,支持CPU和GPU
- 提供高精度版本人像抠图,可以达到精细到发丝级别的抠图效果(Android GPU 150ms, CPU 500ms左右)
- 提供轻量化快速版人像抠图,满足基本的人像抠图效果,可以在Android达到实时的抠图效果(Android GPU 60ms, CPU 140ms左右)
高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5的模型参数量和计算量:
模型 | input size | FLOPs and Params |
modnet | 416×416 | Model FLOPs 10210.24M, Params 6.44M |
modnet0.75 | 320×320 | Model FLOPs 3486.23M, Params 3.64M |
modnet0.5 | 320×320 | Model FLOPs 1559.07M, Params 1.63M |
最近发现,百度PaddleSeg团队也复现了MODNet算法(基于PaddlePaddle框架,非Pytorch版本),提供了更丰富的backbone模型选择,如MobileNetV2,ResNet50,HRNet_W18,可适用边缘端、服务端等多种任务场景,有兴趣的可以看看:
PaddlePaddle版本:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/Matting
5. Demo测试效果
项目环境配置好后,运动demo.py即可测试抠图效果,方法
- 测试图片
# 测试图片
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --image_dir "data/test_images"
- 测试视频文件
# 测试视频文件
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --video_file "data/video/video-test1.mp4"
- 测试摄像头
# 测试摄像头
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --video_file 0
下图GIF是Python版本的视频抠图效果
实际使用中,建议你:
- 背景越单一,抠图的效果越好,背景越复杂,抠图效果越差;建议你实际使用中,找一比较单一的背景,如墙面,天空等
- 上半身抠图的效果越好,下半身或者全身抠图效果较差;本质上这是数据的问题,因为训练数据70%都是只有上半身的
- 白种人抠图的效果越好,黑人和黄种人抠图效果较差;这也是数据的问题,因为训练数据大部分都是隔壁的老外
下图是高精度版本人像抠图和快速人像抠图的测试效果,相对而言,高精度版本人像抠图可以精细到发丝级别的抠图效果;而快速人像构图目前仅能实现基本的抠图效果
高精度版本人像抠图 | 快速人像抠图 |
6. 源码下载(Python)
项目源码下载地址:Python实现人像抠图 (Portrait Matting)
项目源码内容包含:
- 提供Python的推理代码(不含训练代码和不含数据集)
- 提供高精度版本人像抠图模型(modnet_416),可以达到精细到发丝级别的抠图效果
- 提供轻量化快速版人像抠图模型(modnet0.75_320和modnet0.5_320),满足基本的人像抠图效果,
- Demo支持图片抠图,视频抠图,摄像头抠图
7.人像抠图C++版本
一键抠图2:C/C++实现人像抠图 (Portrait Matting)
8.人像抠图Android版本
一键抠图3:Android实现人像抠图 (Portrait Matting)