首页 > 编程语言 >程序开发中常用的10种算法,你用过几种?

程序开发中常用的10种算法,你用过几种?

时间:2023-11-30 14:49:07浏览次数:44  
标签:10 arr parent int 程序开发 ++ 算法 new public

当编写程序时,了解和使用不同的算法对解决问题至关重要。以下是C#中常用的10种算法,每个算法都伴随着示例代码和详细说明。

1. 冒泡排序 (Bubble Sort):

冒泡排序是一种简单的比较排序算法,它多次遍历数组,将较大的元素逐渐浮动到数组的末尾。

public static void BubbleSort(int[] arr)
{
    int n = arr.Length;
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = 0; j < n - i - 1; j++)
        {
            if (arr[j] > arr[j + 1])
            {
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}

2. 快速排序 (Quick Sort):

快速排序是一种高效的分治排序算法,它通过选择一个基准元素并将数组分为较小和较大的两部分来进行排序。

public static void QuickSort(int[] arr, int low, int high)
{
    if (low < high)
    {
        int partitionIndex = Partition(arr, low, high);
        QuickSort(arr, low, partitionIndex - 1);
        QuickSort(arr, partitionIndex + 1, high);
    }
}

public static int Partition(int[] arr, int low, int high)
{
    int pivot = arr[high];
    int i = low - 1;

    for (int j = low; j < high; j++)
    {
        if (arr[j] < pivot)
        {
            i++;
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }

    int swap = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = swap;

    return i + 1;
}

3. 合并排序 (Merge Sort):

合并排序是一种稳定的分治排序算法,它将数组分成两半,分别排序后再合并。

public static void MergeSort(int[] arr)
{
    int n = arr.Length;
    if (n > 1)
    {
        int mid = n / 2;
        int[] left = new int[mid];
        int[] right = new int[n - mid];

        for (int i = 0; i < mid; i++)
            left[i] = arr[i];
        for (int i = mid; i < n; i++)
            right[i - mid] = arr[i];

        MergeSort(left);
        MergeSort(right);

        int i = 0, j = 0, k = 0;
        while (i < mid && j < (n - mid))
        {
            if (left[i] < right[j])
                arr[k++] = left[i++];
            else
                arr[k++] = right[j++];
        }
        while (i < mid)
            arr[k++] = left[i++];
        while (j < (n - mid))
            arr[k++] = right[j++];
    }
}

4. 二分查找 (Binary Search):

二分查找是一种高效的查找算法,它要求在有序数组中查找特定元素。

public static int BinarySearch(int[] arr, int target)
{
    int low = 0, high = arr.Length - 1;
    while (low <= high)
    {
        int mid = (low + high) / 2;
        if (arr[mid] == target)
            return mid;
        else if (arr[mid] < target)
            low = mid + 1;
        else
            high = mid - 1;
    }
    return -1;
}

5. 深度优先搜索 (Depth-First Search, DFS):

DFS 是一种图遍历算法,它从起始节点开始,沿着路径尽可能深入,然后返回并继续搜索。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V;
    private List<int>[] adj;

    public Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; i++)
            adj[i] = new List<int>();
    }

    public void AddEdge(int v, int w)
    {
        adj[v].Add(w);
    }

    public void DFS(int v)
    {
        bool[] visited = new bool[V];
        DFSUtil(v, visited);
    }

    private void DFSUtil(int v, bool[] visited)
    {
        visited[v] = true;
        Console.Write(v + " ");

        foreach (var n in adj[v])
        {
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
}

6. 广度优先搜索 (Breadth-First Search, BFS):

BFS 是一种图遍历算法,它从起始节点开始,逐层遍历,先访问所有相邻的节点,然后再逐层扩展。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V;
    private List<int>[] adj;

    public Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; i++)
            adj[i] = new List<int>();
    }

    public void AddEdge(int v, int w)
    {
        adj[v].Add(w);
    }

    public void BFS(int s)
    {
        bool[] visited = new bool[V];

        Queue<int> queue = new Queue<int>();
        visited[s] = true;
        queue.Enqueue(s);

        while (queue.Count != 0)
        {
            s = queue.Dequeue();
            Console.Write(s + " ");

            foreach (var n in adj[s])
            {
                if (!visited[n])
                {
                    visited[n] = true;
                    queue.Enqueue(n);
                }
            }
        }
    }
}

7. Dijkstra算法:

Dijkstra算法是一种用于查找图中最短路径的算法。

public class Dijkstra
{
    private static int V = 9;

    private int MinDistance(int[] dist, bool[] sptSet)
    {
        int min = int.MaxValue;
        int minIndex = 0;

        for (int v = 0; v < V; v++)
        {
            if (!sptSet[v] && dist

[v] <= min)
            {
                min = dist[v];
                minIndex = v;
            }
        }

        return minIndex;
    }

    private void PrintSolution(int[] dist)
    {
        Console.WriteLine("Vertex \t Distance from Source");
        for (int i = 0; i < V; i++)
        {
            Console.WriteLine(i + " \t " + dist[i]);
        }
    }

    public void FindShortestPath(int[,] graph, int src)
    {
        int[] dist = new int[V];
        bool[] sptSet = new bool[V];

        for (int i = 0; i < V; i++)
        {
            dist[i] = int.MaxValue;
            sptSet[i] = false;
        }

        dist[src] = 0;

        for (int count = 0; count < V - 1; count++)
        {
            int u = MinDistance(dist, sptSet);

            sptSet[u] = true;

            for (int v = 0; v < V; v++)
            {
                if (!sptSet[v] && graph[u, v] != 0 && dist[u] != int.MaxValue && dist[u] + graph[u, v] < dist[v])
                {
                    dist[v] = dist[u] + graph[u, v];
                }
            }
        }

        PrintSolution(dist);
    }
}

8. 最小生成树 (Minimum Spanning Tree, MST) - Prim算法:

Prim算法用于找到图的最小生成树,它从一个初始顶点开始,逐渐扩展生成树。

public class PrimMST
{
    private static int V = 5;

    private int MinKey(int[] key, bool[] mstSet)
    {
        int min = int.MaxValue;
        int minIndex = 0;

        for (int v = 0; v < V; v++)
        {
            if (!mstSet[v] && key[v] < min)
            {
                min = key[v];
                minIndex = v;
            }
        }

        return minIndex;
    }

    private void PrintMST(int[] parent, int[,] graph)
    {
        Console.WriteLine("Edge \t Weight");
        for (int i = 1; i < V; i++)
        {
            Console.WriteLine(parent[i] + " - " + i + " \t " + graph[i, parent[i]]);
        }
    }

    public void FindMST(int[,] graph)
    {
        int[] parent = new int[V];
        int[] key = new int[V];
        bool[] mstSet = new bool[V];

        for (int i = 0; i < V; i++)
        {
            key[i] = int.MaxValue;
            mstSet[i] = false;
        }

        key[0] = 0;
        parent[0] = -1;

        for (int count = 0; count < V - 1; count++)
        {
            int u = MinKey(key, mstSet);

            mstSet[u] = true;

            for (int v = 0; v < V; v++)
            {
                if (graph[u, v] != 0 && !mstSet[v] && graph[u, v] < key[v])
                {
                    parent[v] = u;
                    key[v] = graph[u, v];
                }
            }
        }

        PrintMST(parent, graph);
    }
}

9. 最小生成树 (Minimum Spanning Tree, MST) - Kruskal算法:

Kruskal算法也用于找到图的最小生成树,它基于边的权重排序。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V, E;
    private List<Edge> edges;

    public Graph(int v, int e)
    {
        V = v;
        E = e;
        edges = new List<Edge>(e);
    }

    public void AddEdge(int src, int dest, int weight)
    {
        edges.Add(new Edge(src, dest, weight));
    }

    public void KruskalMST()
    {
        edges.Sort();

        int[] parent = new int[V];
        int[] rank = new int[V];

        for (int i = 0; i < V; i++)
        {
            parent[i] = i;
            rank[i] = 0;
        }

        int i = 0;
        int e = 0;

        List<Edge> mst = new List<Edge>();

        while (e < V - 1)
        {
            Edge nextEdge = edges[i++];
            int x = Find(parent, nextEdge.src);
            int y = Find(parent, nextEdge.dest);

            if (x != y)
            {
                mst.Add(nextEdge);
                Union(parent, rank, x, y);
                e++;
            }
        }

        Console.WriteLine("Edges in Minimum Spanning Tree:");
        foreach (var edge in mst)
        {
            Console.WriteLine($"{edge.src} - {edge.dest} with weight {edge.weight}");
        }
    }

    private int Find(int[] parent, int i)
    {
        if (parent[i] == i)
            return i;
        return Find(parent, parent[i]);
    }

    private void Union(int[] parent, int[] rank, int x, int y)
    {
        int xRoot = Find(parent, x);
        int yRoot = Find(parent, y);

        if (rank[xRoot] < rank[yRoot])
            parent[xRoot] = yRoot;
        else if (rank[xRoot] > rank[yRoot])
            parent[yRoot] = xRoot;
        else
        {
            parent[yRoot] = xRoot;
            rank[xRoot]++;
        }
    }
}

public class Edge : IComparable<Edge>
{
    public int src, dest, weight;

    public Edge(int src, int dest, int weight)
    {
        this.src = src;
        this.dest = dest;
        this.weight = weight;
    }

    public int CompareTo(Edge other)
    {
        return weight - other.weight;
    }
}

10.Floyd-Warshall算法是一种用于解决所有点对最短路径的动态规划算法。

下面是C#中的Floyd-Warshall算法的实现示例:

using System;

class FloydWarshall
{
    private static int INF = int.MaxValue; // 代表无穷大的值

    public static void FindShortestPath(int[,] graph)
    {
        int V = graph.GetLength(0);

        // 创建一个二维数组dist,用于保存最短路径的长度
        int[,] dist = new int[V, V];

        // 初始化dist数组
        for (int i = 0; i < V; i++)
        {
            for (int j = 0; j < V; j++)
            {
                dist[i, j] = graph[i, j];
            }
        }

        // 逐个顶点考虑,如果经过k顶点路径比原路径短,就更新dist数组
        for (int k = 0; k < V; k++)
        {
            for (int i = 0; i < V; i++)
            {
                for (int j = 0; j < V; j++)
                {
                    if (dist[i, k] != INF && dist[k, j] != INF
                        && dist[i, k] + dist[k, j] < dist[i, j])
                    {
                        dist[i, j] = dist[i, k] + dist[k, j];
                    }
                }
            }
        }

        // 输出最短路径矩阵
        Console.WriteLine("最短路径矩阵:");
        for (int i = 0; i < V; i++)
        {
            for (int j = 0; j < V; j++)
            {
                if (dist[i, j] == INF)
                    Console.Write("INF\t");
                else
                    Console.Write(dist[i, j] + "\t");
            }
            Console.WriteLine();
        }
    }

    static void Main(string[] args)
    {
        int V = 4; // 顶点数
        int[,] graph = {
            {0, 5, INF, 10},
            {INF, 0, 3, INF},
            {INF, INF, 0, 1},
            {INF, INF, INF, 0}
        };

        FindShortestPath(graph);
    }
}

在这个示例中,我们使用Floyd-Warshall算法来计算给定图的最短路径矩阵。该算法通过考虑逐个中间顶点k,不断更新最短路径矩阵dist。最终,我们可以获得所有点对之间的最短路径长度。

标签:10,arr,parent,int,程序开发,++,算法,new,public
From: https://www.cnblogs.com/hanbing81868164/p/17867303.html

相关文章

  • P1084 [NOIP2012 提高组] 疫情控制
    首先军队可以原地不动,时间越多越容易合法,先套上二分。在不回到根的情况下,军队深度肯定越小越好。所以军队能往上移就移,如果能回到根就暂时在根对应的儿子那里驻扎。这个过程用树上倍增优化。做完这一步后,我们找出需要军队驻扎的根的儿子(向下不经过军队就能到达叶子),现在就是要让......
  • P1081 [NOIP2012 提高组] 开车旅行
    题目有点长,一步一步来。预处理出每座城市两人分别会选择的下一座城市用set即可实现。倍增优化DP令\(f_{i,j}\)表示从城市\(j\)出发,行驶\(2^i\)天会到达的城市。令\(ga_{i,j}\)表示从城市\(j\)出发,行驶\(2^i\)天,小A行驶的路程。\(gb_{i,j}\)同理。答案枚......
  • win10家庭版修改成专业版
    家庭版和专业版的区别:Windows家庭版和专业版简单点说就是证书不同,用家庭版的密钥激活就是家庭版,用专业版密钥激活。 方法:修改成专业版的产品密钥专业版所需要的内容其实已经下载在本地了,我们只需要激活安装即可,专业版和家庭版的区别在于证书不同。首先断开网络,然后找到:设置-......
  • 程序设计实践基础算法模板
    程设复习代码1.kruscal#include<cstdio>#include<cstring>#include<iostream>#include<algorithm>usingnamespacestd;#defineMAXN100000structrec{intx,y,z;}edge[500010];intfa[100010],n,m,ans;booloperator<(reca,recb)......
  • 算法学习笔记_2
    2023.5面向对象C++:函数1.缺省值(1)函数调用时,如果一个参数使用了缺省值,那么后面的所有参数都要使用缺省值。(2)参数的缺省值在函数声明中指定,而不是在函数定义中指定。在一个文件中,一个参数只能被指定一次缺省值。print(x);//等价于print(x,10)print(x,2);......
  • 算法学习笔记_1
    23.41.一个C++输入时加速的好办法。#includeusingnamespacestd;intmain(){std::ios::sync_with_stdio(false);cin.tie(0);return0;}ios::sync_with_stdio(false)是C++中的语句,用于关闭与stdio的同步。这样做可以提高输入输出效率。2.杂七杂八忙于计设三创,几......
  • 查找算法
    查找1.二分查找二分查找的思路分析有序序列1.首先确定该数组的中间的下标mid=(left+right)/22.然后让需要查找的数findval和arr[mid]比较2.1findval>arr[mid],说明你要查找的数在mid的右边,因此需要递归的向右查找2.2findval<arr[mid],说明你要查找的数在mid的左边,......
  • 求1-100相加的总和
    第一种方式:一行代码搞定print(sum(range(1,101)))  第二种方式:for循环sum=0foriinrange(1,101):sum=sum+1print(sum)  ......
  • 算法竞赛环境配置
    环境配置工欲善其事,必先利其器。编译器是通过源代码生成目标代码的软件,例如常见的的C++编译器有Linux下的GCC和WIN下的GCC编辑器有neovim,vscode...这里介绍的是CPEditor的环境配置也是笔者所使用的环境CPEditor 专为算法竞赛设计,不像其它IDE主要是为了开发设计的。......
  • 国密算法SM4的GCM模式加密解密实现
    importorg.bouncycastle.util.encoders.Hex;importjava.util.Arrays;importjava.util.regex.Matcher;importjava.util.regex.Pattern;publicclassSM4Utils{/***默认SECRET_KEY*secretKey必须为16位,可包含字母、数字、标点*/ privatestat......