首页 > 编程语言 >无线定位中TDOA时延估计算法matlab仿真

无线定位中TDOA时延估计算法matlab仿真

时间:2023-11-29 22:46:57浏览次数:57  
标签:plot hold theory SEL LL TDOA matlab 时延 800

1.算法运行效果图预览

 

 

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

        无线定位中的TDOA(Time Difference of Arrival)时延估计算法是一种基于信号到达时间差的定位技术。它的基本原理是,通过测量信号从发射点到接收点的传播时间差,可以计算出发射点和接收点之间的距离差,从而确定发射点的位置。

 

       TDOA定位系统通常由多个接收器和一个发射器组成。发射器发送信号,接收器接收到信号后,测量信号的到达时间,并将时间信息发送回发射器。发射器根据接收器的时间测量值,计算出每个接收器与发射器之间的距离差,并根据距离差确定发射器的位置。

 

TDOA定位系统的数学公式可以表示为:

 

Δt = (d/c) * ΔT

 

       其中,Δt是信号到达时间差,d是发射器与接收器之间的距离,c是信号传播速度,ΔT是信号发送和接收之间的时间间隔。通过测量Δt,可以计算出d,从而确定发射器的位置。

 

       在实际应用中,TDOA定位系统通常采用多个接收器同时接收信号,并测量信号的到达时间。通过多点测量结果,可以计算出多个距离差,并利用多个距离差确定发射器的位置。这种算法通常采用最小二乘法、多边形法等数学方法进行求解。

 

       需要注意的是,TDOA定位系统需要高精度的计时设备和同步信号源,以保证测量结果的准确性。此外,信号传播路径上的建筑物、地形、气象条件等也会对测量结果造成影响,需要进行误差修正和处理。

 

       总之,TDOA时延估计算法是一种基于信号到达时间差的无线定位技术,其基本原理是通过测量信号传播时间差来计算发射器与接收器之间的距离差,从而确定发射器的位置。在实际应用中,需要高精度的计时设备和同步信号源,并考虑多种因素对测量结果的影响。

 

 

 

4.部分核心程序

figure;
plot(P1x,P1y,'b^','Markersize',8);
hold on;
plot(P2x,P2y,'b^','Markersize',8);
hold on;
plot(P3x,P3y,'b^','Markersize',8);
hold on;
text(P1x+800,P1y+800,'BS1');
text(P2x+800,P2y+800,'BS2');
text(P3x+800,P3y+800,'BS3');
xlabel('X axis');
ylabel('Y axis');
axis([-3*LL/20,3*LL,-3*LL/20,3*LL]);
grid on;
%这里随机生成移动物体的位置坐标
P0x = 2*LL/3;
P0y = 3*LL/4;
plot(P0x,P0y,'ro','Markersize',6);hold off;
text(P0x+800,P0y+800,'M');
title('基站位置');
 
 
%定义发送信号,这里发送信号根据要求使用AM发送信号
fc     = 1000;   %载波频率
tau    = 10^(-7);%时间间隔
T      = 1/fc/2; %频率周期
t      = -T*SL+tau:tau:T*SL;%信号的长度,这里使用8个周期进行
No     = length(t);       %信号的长度
A      = 1;%发送信号的幅度
s      = A*cos(2*pi*fc*t);
rng(1);%use matlab2013b else maybe error
%信道模拟
for j = 1:length(SNR)
    %加入噪声
    r2(1,:) = awgn(r(1,:),SNR(j));
    r2(2,:) = awgn(r(2,:),SNR(j));
    r2(3,:) = awgn(r(3,:),SNR(j));
    
    %加入多径 
    for jj = 1:N
        signals  = r2(jj,:);
        if Mpd == 0
           signals2 = signals;
        else
           signals2 = signals + 0.65*[zeros(1,Mpd),signals(1:end-Mpd)];   
        end
        r3(jj,:) = signals2;
    end
    %计算延迟相关运算
    Peak         = zeros(N,1);%定义相关峰的值
    delay_theory = zeros(N,1);%通过广义相关运算得到的延迟估计值
    for kk = 1:1:LL/10
        tau_theory = tau*kk;
        temp       = r3(1,(No/2-kk+1):(No-kk))*tau;
        for i =2:N
            data   = (sum(r3(i,No/2+1:No).*temp))^2;
            if Peak(i) < data
                Peak(i) = data;
                delay_theory(i) = tau_theory;
            end
        end
    end
 
    %通过TDOA方法,根据理论估计延迟得到实际的坐标点位置
    R_theory = zeros(1,N);
    Kj       = zeros(1,N);
    for i = 2:N
        R_theory(i) = delay_theory(i)*c;
        Kj(i)       = BS(i,1)^2 + BS(i,2)^2;
    end
.................................................................
     
    clear xyChan R1 cs bs as Q_tdoa K_tdoa D_tdoa C_tdoa H_tdoa Kj R_theory delay_theory Peak tau_theory temp
end
 
figure;
plot(SNR,Err,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
grid on;
title('误差曲线 % ');
xlabel('SNR');
ylabel('Err');
axis([10,80,0,5]);
 
%显示理论估计值
figure;
plot(P1x,P1y,'b^','Markersize',8);hold on;
plot(P2x,P2y,'b^','Markersize',8);hold on;
plot(P3x,P3y,'b^','Markersize',8);hold on;
axis([-3*LL/20,3*LL,-3*LL/20,3*LL]);
grid on;
xlabel('X axis');
ylabel('Y axis');
text(P1x+800,P1y+800,'BS1');
text(P2x+800,P2y+800,'BS2');
text(P3x+800,P3y+800,'BS3');
plot(P0x,P0y,'bo','Markersize',8);
hold on;
text(P0x-800,P0y-800,'M');
 
SEL = 1;
 
plot(X_theory(SEL),Y_theory(SEL),'rs','Markersize',8);hold on;
text(X_theory(SEL)+800,Y_theory(SEL)+800,'estimation');
 
R1 = sqrt((X_theory(SEL)-P1x)^2+(Y_theory(SEL)-P1y)^2); 
R2 = sqrt((X_theory(SEL)-P2x)^2+(Y_theory(SEL)-P2y)^2); 
R3 = sqrt((X_theory(SEL)-P3x)^2+(Y_theory(SEL)-P3y)^2);
 
alpha=0.01*pi:pi/100:0.55*pi;                     
x1= P1x+R1*cos(alpha); 
y1= P1y+R1*sin(alpha); 
hold on;
plot(x1,y1,'k-'); 
 
alpha=0.5*pi:pi/100:1.0*pi;                    
x2= P2x+R2*cos(alpha); 
y2= P2y+R2*sin(alpha); 
hold on;
plot(x2,y2,'k-'); 
 
alpha=1.1*pi:pi/100:1.95*pi;                    
x3= P3x+R3*cos(alpha); 
y3= P3y+R3*sin(alpha); 
hold on;
plot(x3,y3,'k-'); 

  

标签:plot,hold,theory,SEL,LL,TDOA,matlab,时延,800
From: https://www.cnblogs.com/matlabworld/p/17866085.html

相关文章

  • 基于深度学习网络的施工人员安全帽佩戴检测matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.算法理论概述        基于深度学习网络的施工人员安全帽佩戴检测是一种先进的技术,它利用深度学习算法对图像或视频进行分析,以检测施工人员是否佩戴了安全帽。基于深度学习网络的施工人员安全帽佩戴......
  • 低时延精品网 - 打造专属智能网络服务的新标杆
    跟着全球信息化的快速开展,企业和机构对通讯网络的需求也在不断晋级。他们不仅要求网络连接稳定牢靠,还对时延、安全性、服务质量等方面提出了更高的要求。为了满意这些需求,各大服务商纷繁推出了一系列立异型网络服务产品,其中就包含低时延精品网。低时延精品网是一种专属智能网络服......
  • 学习笔记434—【Matlab】Matlab读取dcm图像的函数
    【Matlab】Matlab读取dcm图像的函数Matlab版本:2020a一、dicomread函数Matlab读取dcm图像的函数是dicomread,根据dicomread的帮助文档,该函数有四种参数输入方式:X=dicomread(filename);%根据文件名直接读取X=dicomread(info);%根据构造的info结构体读取X=dicomrea......
  • MATLAB Bessel函数的零点计算
    0~9阶的贝塞尔函数零点的计算公式,其中理论上计算零点个数N在50以内时较为精确:Airy光束,基模高斯光束Bessel光束经过大气湍流相位屏的传输特性functionrootBessel=besal_pi0(n,N)%求解n阶贝塞尔函数的零点(0-9)%n为贝塞尔函数阶数%N为要求的零点数量j=zeros......
  • 基于FPGA的图像sobel锐化实现,包括tb测试文件和MATLAB辅助验证
    1.算法运行效果图预览   将FPGA的仿真结果导入到matlab显示图像效果   2.算法运行软件版本MATLAB2022a,vivado2019.2 3.算法理论概述       基于FPGA的图像Sobel锐化实现,是一种通过使用Sobel算子对图像进行边缘检测,从而提高图像清晰度的方法。Sobel......
  • AM62x GPMC并口如何实现“小数据-低时延,大数据-高带宽”—ARM+FPGA低成本通信方案
    GPMC并口简介GPMC(GeneralPurposeMemoryController)是TI处理器特有的通用存储器控制器接口,支持8/16bit数据位宽,支持128MB访问空间,最高时钟速率133MHz。GPMC是AM62x、AM64x、AM437x、AM335x、AM57x等处理器专用于与外部存储器设备的接口,如:(1)FPGA器件(2)ADC器件(3)SRAM内存(4)N......
  • 基于图像形态学处理和边缘提取算法的路面裂痕检测matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a 3.算法理论概述       路面裂痕检测是基于图像处理和机器视觉的一种重要应用。通过图像形态学处理和边缘提取算法,我们可以有效地检测出路面的裂痕。路面裂痕检测主要基于图像处理和机器视觉的原理。......
  • 基于深度学习网络的烟雾检测算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a 3.算法理论概述      基于深度学习网络的烟雾检测算法是一种端到端的检测方法,主要分为基于候选区域的二阶段目标检测器和基于回归的单阶段目标检测器两类。      基于候选区域的二阶段目标检测......
  • 基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据
    1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述        该算法主要由两个部分组成:HOG特征提取和GRNN神经网络。下面将详细介绍这两个部分的原理和数学公式。 1.HOG特征提取      HOG(HistogramofOrientedGradients)是......
  • 基于FPGA的图像指数对比度增强算法实现,包括tb测试文件和MATLAB辅助验证
    1.算法运行效果图预览      2.算法运行软件版本Vivado2019.2 matlab2022a 3.算法理论概述3.1图像指数对比度增强概述     图像指数对比度增强是一种常见的图像处理方法,主要是通过改变图像的像素值来增强图像的对比度。具体来说,它通常通过将原始图像......