首页 > 编程语言 >基于uwb和IMU融合的三维空间定位算法matlab仿真

基于uwb和IMU融合的三维空间定位算法matlab仿真

时间:2023-11-24 13:33:27浏览次数:39  
标签:conv jj1 delay IMU matlab jj UWB uwb

1.算法运行效果图预览

 

 

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

         基于UWB和IMU融合的三维空间定位算法是一个结合了无线脉冲波(UWB)和惯性测量单元(IMU)各自优势的定位方法。UWB通过测量信号的传输时间来计算距离,具有精度高、抗干扰能力强等优点,但易受多径效应和环境噪声的影响。IMU则通过测量加速度和角速度来计算姿态和位置信息,具有实时性和动态性强的特点,但受限于加速度的测量误差和漂移。

 

        通过将这两种技术进行融合,可以充分利用它们的优点来提高定位精度和稳定性。具体来说,UWB可以提供高精度的距离信息,用于计算目标的位置和姿态,而IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移,同时提高系统的响应速度和鲁棒性。

 

       下面介绍一种基于UWB和IMU融合的三维空间定位算法,其原理和数学公式如下:

 

UWB定位

         UWB采用双基站的定位方式,假设已知两个基站的位置坐标为(x1, y1, z1)和(x2, y2, z2),目标的位置坐标为(x, y, z),则可以通过以下公式计算目标到两个基站的距离差:

 

Δd = (x2-x1)² + (y2-y1)² + (z2-z1)² - (x-x1)² - (y-y1)² - (z-z1)²

 

        其中,(x, y, z)为目标的位置坐标,(x1, y1, z1)和(x2, y2, z2)分别为两个基站的位置坐标。根据距离差和两个基站的坐标,可以列出两个方程,求解得到目标的位置坐标(x, y, z)。

 

IMU辅助

 

       IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移。具体来说,IMU可以提供一个加速度传感器和一个陀螺仪,分别测量加速度和角速度信息。通过对这些信息进行积分和平滑处理,可以得到目标的姿态和位置信息。

 

       在融合过程中,可以将IMU的加速度和角速度信息作为UWB的辅助数据,对UWB的测量结果进行修正。具体来说,可以将IMU的加速度信息用于计算目标的速度和加速度,对UWB的距离测量结果进行修正,同时利用IMU的角速度信息对UWB的角度测量结果进行修正。这样可以使系统具有更高的精度和鲁棒性。

 

融合算法

 

      基于UWB和IMU融合的三维空间定位算法主要包括两个阶段:数据采集阶段和数据融合阶段。在数据采集阶段,通过UWB和IMU采集目标的位置、速度、加速度、角速度等信息;在数据融合阶段,将采集到的数据进行融合处理,得到目标的最终位置、速度、加速度、角速度等信息。

解算过程可以根据需要采用最小二乘法、卡尔曼滤波等方法进行优化求解。例如,采用卡尔曼滤波算法可以将UWB和IMU的数据进行融合处理,得到更为精确的目标位置、速度、加速度、角速度等信息。具体实现过程如下:

 

(1)初始化状态矩阵和控制矩阵;

(2)通过UWB和IMU采集数据;

(3)利用采集到的数据计算状态矩阵和控制矩阵;

(4)根据卡尔曼滤波公式对状态矩阵和控制矩阵进行迭代计算;

(5)根据迭代结果计算目标的最终位置、速度、加速度、角速度等信息。

 

算法优点

 

 

基于UWB和IMU融合的三维空间定位算法具有以下优点:

(1)精度高:通过UWB和IMU的融合,可以减小环境噪声对定位精度的影响,提高算法的鲁棒性;

(2)实时性强:IMU的加速度和角速度信息可以提供实时的姿态和位置信息,对UWB的距离测量结果进行修正,缩短了系统的响应时间;

(3)可靠性高:通过数据融合技术处理多传感器数据,可以减小单一传感器的故障对系统性能的影响;

(4)扩展性强:该算法可以适用于多种场景,例如机器人定位、无人驾驶等。

 

 

 

 

4.部分核心程序

kkk = 0;
for EbN0 = EbN0_sub
    kkk
    kkk = kkk + 1;
    
    for jj1 = 1:Tag_Num
        jj1
        rng(jj1);
        for jj = 1:num_bits
            
            %TAG to BS1
            delay_1         = round(time_bs_tag(1,jj1)/ts);
            xx1             = zeros(1,delay_1);
            %传播时延
            delay_1_1(jj,:) = [xx1 sig(1:end-length(xx1))];
            %UWB
            h_4             = uwb_channel(dist_bs_tag(1,jj1)); 
            %信号经过信道
            conv_data1      = conv(delay_1_1(jj,:),h_4); 
            UWB_chan1(jj,:) = conv_data1(1:length(sig));
            
            
            
            %TAG to BS2
            delay_2         = round(time_bs_tag(2,jj1)/ts);
            xx2             = zeros(1,delay_2);
            %传播时延
            delay_2_1(jj,:) = [xx2 sig(1:end-length(xx2))];
            h_2             = uwb_channel(dist_bs_tag(2,jj1));
            conv_data2      = conv(delay_2_1(jj,:),h_2);
            UWB_chan2(jj,:) = conv_data2(1:length(sig));
 
            %TAG to BS3
            delay_3         = round(time_bs_tag(3,jj1)/ts);
            xx3             = zeros(1,delay_3);
            %传播时延
            delay_3_1(jj,:) = [xx3 sig(1:end-length(xx3))];
            h_3             = uwb_channel(dist_bs_tag(3,jj1));
            conv_data3      = conv(delay_3_1(jj,:),h_3);
            UWB_chan3(jj,:) = conv_data3(1:length(sig));
 
            %TAG to BS4
            delay_4         = round(time_bs_tag(4,jj1)/ts);
            xx4             = zeros(1,delay_4);
            %传播时延
            delay_4_1(jj,:) = [xx4 sig(1:end-length(xx4))];
            h_4             = uwb_channel(dist_bs_tag(4,jj1));
            conv_data4      = conv(delay_4_1(jj,:), h_4);
            UWB_chan4(jj,:) = conv_data4(1:length(sig));   
        end
 
        for jj = 1:num_bits
            UWB_chan1n(jj,:) = awgn(UWB_chan1(jj,:)/max(UWB_chan1(jj,:)),EbN0,'measured');
            UWB_chan2n(jj,:) = awgn(UWB_chan2(jj,:)/max(UWB_chan2(jj,:)),EbN0,'measured');
            UWB_chan3n(jj,:) = awgn(UWB_chan3(jj,:)/max(UWB_chan3(jj,:)),EbN0,'measured');
            UWB_chan4n(jj,:) = awgn(UWB_chan4(jj,:)/max(UWB_chan4(jj,:)),EbN0,'measured');
        end
 
        
        %自适应前沿检测
        %自适应前沿检测
 
..........................................................
        
    end
end
 
 
P_est0 = [x_est0',y_est0',z_est0'];
P_est1 = [x_est1',y_est1',z_est1'];
 
figure;
plot(toa_error0,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
 
hold on
title('估计误差')
 
axis([0,Tag_Num,0,2]);
ylabel('cm');
 
 
figure
axis([0 10 0 10 0 10]);  
for i=1:BS_Num      
    plot3(BS_pos(i,1),BS_pos(i,2),BS_pos(i,3),'ko','MarkerFace','y','MarkerSize',8);
    hold on
end
hold on
for i=1:Tag_Num
plot3(Tag(i,1),Tag(i,2),Tag(i,3),'k^','MarkerFace','b','MarkerSize',6);
hold on
plot3(x_est1(i),y_est1(i),z_est1(i),'ks','MarkerFace','r','MarkerSize',6);
hold on
end
 
grid on
xlabel('cm');
ylabel('cm');
zlabel('cm');
 
 
save R.mat toa_error1

  

标签:conv,jj1,delay,IMU,matlab,jj,UWB,uwb
From: https://www.cnblogs.com/matlabworld/p/17853553.html

相关文章

  • m基于Faster-RCNN网络的猫脸检测和猫眼定位系统matlab仿真,带GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要       猫作为一种受欢迎的宠物,其图像在互联网上大量存在。对猫脸和猫眼进行准确检测和定位,在宠物识别、情感分析等领域具有广泛的应用价值。然而,由于猫脸和猫眼的多样性以及复杂背景的干扰,传统......
  • matlab的函数.m文件
    函数建立function [A]=name(参数1,参数2);‘’‘return;end保存为M文件,开头不要有多余的东西,不然就算在一个路径下,也无法识别函数名;也不是函数名和M文件名相同的问题,再说局部函数也不能同名。比如前面加个清理内存的东西clear;function [A]=name(参数1,参数2)...end这咋用都......
  • 基于googlenet网络的动物种类识别算法matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a 3.算法理论概述       动物种类识别算法基于深度学习技术,尤其是卷积神经网络(CNN),如GoogleNet。这种算法的主要原理是通过学习和识别图像中的特征来预测动物的种类。        GoogleNet,也被......
  • 基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a 3.算法理论概述      基于大规模MIMO通信系统的半盲信道估计算法涉及多个步骤,其原理和数学公式概括如下:        首先,MIMO系统需要发送已知的训练序列,在接收端进行初始的信道估计。当发送......
  • Ego_planner_swarm之minimum snap(jerk)代码解释
    首先是minimumsnap的理论推导过程https://blog.csdn.net/u011341856/article/details/121861930我对他的博客的一些笔记https://pan.quark.cn/s/8549109ff930#/list/share下面就是对高飞老师egoplanner中的minimumsnap(jerk)的注释解析#include<iostream>#include<traj......
  • 【雷达】雷达脉冲压缩及多普勒处理附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。......
  • IMU介绍
    陀螺仪常见的陀螺仪为MEMS,使用硅微加工技术制造,使用科氏力。误差模型\[m(t)=m_t(t)+bias(t)+\epsilon(t)\\\dot{bias}(t)=n_b(t)\]固定偏差bias,作为状态量估计白噪声\(\epsilon(t)\)积分成角度随机游走,连续时间标准差\(\sigma\)(标定结果)除以\(sqrt(\delta(t))\)得到离散标......
  • 【气动学】基于龙格库塔是实现可变初始角度、速度、空气阻力下的水平风弹道轨迹仿真附
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。......
  • Matlab实现快速傅里叶逆变换
    ✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。......
  • MATLAB用Lasso回归拟合高维数据和交叉验证|附代码数据
    原文链接:http://tecdat.cn/?p=25741原文出处:拓端数据部落公众号此示例显示如何 lasso 识别和舍弃不必要的预测变量。使用各种方法从指数分布生成200个五维数据X样本。 htmlrng(3,'twister')%实现可重复性fori=1:5X(:,i)=exprndend生成因......