首页 > 编程语言 >x86平台SIMD编程入门(4):整型指令

x86平台SIMD编程入门(4):整型指令

时间:2023-11-04 15:55:26浏览次数:45  
标签:mm256 __ x86 mm 指令 epi16 整型 SIMD epi32

1、算术指令

算术类型 函数示例
_mm_add_epi32_mm256_sub_epi16
_mm_sub_epi32_mm256_sub_epi16
_mm_mul_epi32_mm_mullo_epi32
水平加/减 _mm_hadd_epi16_mm256_hsub_epi32
饱和加/减 _mm_adds_epi8_mm256_subs_epi16
最大/最小值 _mm_max_epu8_mm256_min_epi32
绝对值 _mm_abs_epi16_mm256_abs_epi32
平均值 _mm_avg_epu16_mm256_avg_epu8

没有整数除法的SIMD指令。如果要将所有通道都除以一个编译时常数,可以使用一个小技巧:编写一个函数,将相同类型的标量除以该常数,然后使用Compiler Explorer编译成汇编指令,最后移植成相应SIMD指令。例如,要把uint16_t类型的整数除以11,则上述技巧的操作过程如下:

// STEP1: 写一个计算除法的普通函数
#include <cstdint>
uint16_t div11(uint16_t a)
{
    return a / 11;
}

// STEP2: 将上面的代码复制到Compiler Explorer中,生成对应的汇编代码如下
div11(unsigned short):
        push    rbp
        mov     rbp, rsp
        mov     eax, edi
        mov     WORD PTR [rbp-4], ax
        movzx   eax, WORD PTR [rbp-4]
        movzx   eax, ax
        imul    eax, eax, 47663
        shr     eax, 16
        shr     ax, 3
        pop     rbp
        ret

// STEP3: 参考上述汇编代码中的计算方式,编写对应的SIMD指令
__m128i div_by_11_epu16(__m128i x)
{
    x = _mm_mulhi_epu16(x, _mm_set1_epi16((short)47663));
    return _mm_srli_epi16(x, 3);
}

整数指令中有一类比较“奇怪”指令,是_mm_sad_epu8(SSE2)和_mm256_sad_epu8(AVX2),它们的运算逻辑相当于以下代码:

array<uint64_t, 4> avx2_sad_epu8(array<uint8_t, 32> a, array<uint8_t, 32> b)
{
    array<uint64_t, 4> result;
    for (int i = 0; i < 4; i++)
    {
        uint16_t totalAbsDiff = 0;
        for (int j = 0; j < 8; j++)
        {
            const uint8_t va = a[i * 8 + j];
            const uint8_t vb = b[i * 8 + j];
            const int absDiff = abs((int)va - (int)vb);
            totalAbsDiff += (uint16_t)absDiff;
        }
        result[i] = totalAbsDiff;
    }
    return result;
}

它们可能最初是为了视频编码器设计的,用于估算压缩误差。不过这些指令也可以用来做与视频编码无关的事,例如用它们来计算所有字节的总和就非常快速,只要把_mm_sad_epu8第二个参数设为全零向量,然后使用_mm_add_epi64累加结果即可。

2、比较指令

运算符 函数示例
等于 _mm_cmpeq_epi8_mm256_cmpeq_epi64
大于 _mm_cmpgt_epi8_mm256_cmpgt_epi64
小于 _mm_cmplt_epi8_mm_cmplt_epi16_mm_cmplt_epi32

整数比较指令只有全通道的版本。与浮点数比较指令类似,整数比较结果也会被设置成全0或者全1。全1的有符号整数等于-1,若要统计比较结果为真的数量,一个技巧是使用下面代码所示的整数减法。使用这个技巧时要注意累加器的整数溢出问题,解决这个问题的一种方法是嵌套循环,内循环保证累加器不会溢出,外循环把内循环的累加结果投射到更宽的整数类型上。

const __m128i cmp = _mm_cmpgt_epi32(val, threshold);
acc = _mm_sub_epi32(acc, cmp); // acc是保存计数的累加器

没有小于等于或大于等于的整数比较指令。如果要比较a <= b这样情况,可以使用min(a, b) == a这样的方法来实现。

没有无符号整数的比较指令。如果有需要,可以参考下面的方法手动实现:

__m128i cmpgt_epu16(__m128i a, __m128i b)
{
    const __m128i highBit = _mm_set1_epi16((short)0x8000);
    a = _mm_xor_si128(a, highBit);
    b = _mm_xor_si128(b, highBit);
    return _mm_cmpgt_epi16(a, b);
}

movemask指令只有8位整数的版本。如果想要在通用寄存器中获得32位整数的比较结果,一种变通的方法是先把__m128i重解释转换成__m128然后使用_mm_movemask_ps(对于64位结果则是先转换成__m128d然后使用_mm_movemask_pd)。

3、移位指令

3.1、寄存器移位

函数示例 说明
_mm_slli_si128 __m128i寄存器整体进行左移
_mm_srli_si128 __m128i寄存器整体进行右移
_mm256_slli_si256 __m256i寄存器中的高低两个128位数据分别进行左移(如果要对256位数据整体移位,可以参考这个stackoverflow链接
_mm256_srli_si256 __m256i寄存器中的高低两个128位数据分别进行右移
_mm_alignr_pi8 将两个__m64输入向量首尾拼接后右移
_mm_alignr_epi8 将两个__m128i输入向量首尾拼接后右移
_mm256_alignr_epi8 将两个__m256i输入向量中的高低128位分别首尾拼接后右移

上表中的最小移位步长都是1字节。

3.2、通道移位

下表所列的函数是对每个通道都做等长的移位操作。例如_mm_srli_epi16(x, 4)会把通道中的0x8015转换为0x0801

函数示例 说明
_mm_slli_epi16_mm_slli_epi32_mm_slli_epi64 __m128i寄存器的每个通道都做等长的左移
_mm_srli_epi16_mm_srli_epi32_mm_srli_epi64 __m128i寄存器的每个通道都做等长的右移
_mm256_slli_epi16_mm256_slli_epi32_mm256_slli_epi64 __m256i寄存器的每个通道都做等长的左移
_mm256_srli_epi16_mm256_srli_epi32_mm256_srli_epi64 __m256i寄存器的每个通道都做等长的右移

还有一类移位函数会保留符号位,它们是_mm_srai_epi16_mm_srai_epi32_mm256_srai_epi16_mm256_srai_epi32。这类函数可能是为了弥补整数除法指令的缺失,例如_mm_srai_epi16(x, 4)会把通道中的0x8015转换为0xF801,它相当于为有符号的int16_t整数做了除法x / 16

AVX2引入了一系列指令来为每个通道分别指定不同的移位长度,它们是_mm_sllv_epi32_mm_sllv_epi64_mm_srlv_epi32_mm_srlv_epi64以及对应的_mm256前缀版本。

4、打包与解包指令

函数示例 说明
_mm_unpacklo_epi32 输入两个向量[a, b, c, d]和[e, f, g, h],返回[a, e, b, f]。
_mm_unpackhi_epi32 输入两个向量[a, b, c, d]和[e, f, g, h],返回[c, g, d, h]
_mm_packs_epi16 输入两个有符号整数向量,使用饱和运算将每个通道打包为位宽减半的类型
_mm_packus_epi16 输入两个无符号整数向量,使用饱和运算将每个通道打包为位宽减半的类型

unpacklo/unpackhi指令的一种用法是:如果第二个输入向量为全0,就可以把无符号整数转换到更宽的类型,例如8位无符号整数变为16位无符号整数。不过,也有指令可以直接实现无符号整数向更宽类型的转换,例如_mm_cvtepu16_epi32_mm256_cvtepu8_epi32等。

5、洗牌指令

函数示例 说明 示意图
_mm_shuffle_epi32 右图中,控制常数是0x0D(二进制 00 00 11 01)。输出向量的4个通道分别来自输入向量的0b01、0b11、0b00、0b00号通道。
_mm_shufflelo_epi16 对低4个通道进行洗牌,高4个通道直接复制。右图中的控制常数是0x0D。
_mm_shufflehi_epi16 对高4个通道进行洗牌,低4个通道直接复制。右图中的控制常数是0x0D。
_mm_insert_epi16 插入一个整数。与浮点数插入指令不同的是,插入的整数来自通用寄存器。
_mm_blend_epi16 混合两个寄存器的通道。右图中的控制常数是0xB8(二进制 10111000)。
_mm_broadcastb_epi8
_mm_broadcastw_epi16
_mm_broadcastd_epi32
_mm_broadcastq_epi64
把最低的通道广播到其它通道,右图是_mm_broadcastd_epi32
_mm_blendv_epi8 与blend指令不同的是,混合位掩码不直接编码到指令中,而是使用另一个寄存器。
_mm256_permutevar8x32_epi32 接收一个包含源数据的整数寄存器和一个包含源索引的整数寄存器,根据索引值选择通道。
_mm_shuffle_epi8 与其它类型的shuffle指令不同,这是唯一一条运行时按变量洗牌的指令。

标签:mm256,__,x86,mm,指令,epi16,整型,SIMD,epi32
From: https://www.cnblogs.com/moonzzz/p/17808601.html

相关文章

  • x86平台SIMD编程入门(3):浮点指令
    1、算术指令算术类型函数示例备注加_mm_add_sd、_mm256_add_ps减_mm_sub_sd、_mm256_sub_ps乘_mm_mul_sd、_mm256_mul_ps除_mm_div_sd、_mm256_div_ps平方根_mm_sqrt_sd、_mm256_sqrt_ps倒数_mm_rcp_ss、_mm_rcp_ps、_mm256_rcp_ps快速计算......
  • x86平台SIMD编程入门(2):通用指令
    1、重解释转换虽然128位的XMM寄存器在硬件上只是256位YMM寄存器的下半部分,但在C++中它们是不同的类型。有一些intrinsic函数可以将它们重新解释为不同的类型,如下表所示,行代表源类型,列代表目标类型。__m128__m128d__m128i__m256__m256d__m256d__m128=_mm_castps_......
  • x86平台SIMD编程入门(1):SIMD基础知识
    1、简介SIMD(SingleInstruction,MultipleData)是一种并行计算技术,它通过向量寄存器存储多个数据元素,并使用单条指令同时对这些数据元素进行处理,从而提高了计算效率。SIMD已被广泛应用于需要大量数据并行计算的领域,包括图像处理、视频编码、信号处理、科学计算等。许多现代处理......
  • libpcre2-8.so.0()(64bit) is needed by zabbix-agent-6.4.0-release1.el7.x86_64
    报错:libpcre2-8.so.0()(64bit)isneededbyzabbix-agent-6.4.0-release1.el7.x86_64解决方法:[root@zabbix_server~]#yuminstallpcre2-......
  • C#中无法将文件“obj\x86\Debug\BookShoopTuto.exe”复制到“bin\Debug\BookShoo
    因为任务多开了,数据无法写入也是因为这个去任务管理区删掉运行的项目就可以了(删掉BookShoopTuto) 参考博客——https://blog.csdn.net/nxg0916/article/details/126782186......
  • 钡铼技术 工控机领域的X86和ARM处理器:哪个更适合你?
    X86和ARM是两种不同的处理器架构,它们在工控机中的应用也有所不同。X86架构的处理器是英特尔公司和AMD公司生产的,它们主要应用于个人电脑和服务器等领域。X86架构的处理器具有良好的通用性和兼容性,可以运行各种操作系统和应用软件。X86架构的处理器的性能强劲,适合处理复杂的计算任务......
  • 钡铼技术 工控机选购指南:理解X86和ARM处理器的区别
    X86和ARM是两种不同的处理器架构,它们在工控机中的应用也有所不同。X86架构的处理器是英特尔公司和AMD公司生产的,它们主要应用于个人电脑和服务器等领域。X86架构的处理器具有良好的通用性和兼容性,可以运行各种操作系统和应用软件。X86架构的处理器的性能强劲,适合处理复杂的计......
  • 整型数组按照字典序排序
    整型数组按照字典序排序输入...0,1,2,3,5,7,8,1001,109...输出...0,1,10,1001,2,3,5,7,8Collections.sort(list,newComparator<Integer>(){@Overridepublicintcompare(Integero1,Integero2){StringA=o1+"";StringB=......
  • ELF文件结构分析(x86 gnu版本)
    为了学习使用objdump和size命令,以simple_section.c为例进行分析。编译环境是x86ubuntu,首先编译这个文件。gcc-csimple_section.c命令解释objdump作用:分析二进制文件的内容信息objdump--helpUsage:objdump<option(s)><file(s)>Displayinformationfromobject<fi......
  • 自制x86 BOOTLADER开发笔记(1)——— 开发环境配置
    前言数年前,出于对于操作系统内核的好奇和兴趣,看了一些自制内核资料和教程,断断续续地也写了一个简单的的玩具内核。在学习的过程中,往往第一步遇到的问题就是内核的加载和系统的引导,发现不少教程都使用grub等现成的工具直接完成这一步骤,这样能快速的完成读取硬盘、加载内核文件、......