首页 > 编程语言 >白话解析:一致性哈希算法 consistent hashing

白话解析:一致性哈希算法 consistent hashing

时间:2023-08-01 19:45:52浏览次数:50  
标签:缓存 hash consistent 算法 哈希 服务器 hashing 图片

  在了解一致性哈希算法之前,最好先了解一下缓存中的一个应用场景,了解了这个应用场景之后,再来理解一致性哈希算法,就容易多了,也更能体现出一致性哈希算法的优点,那么,我们先来描述一下这个经典的分布式缓存的应用场景。

场景描述

假设,我们有三台缓存服务器,用于缓存图片,我们为这三台缓存服务器编号为0号、1号、2号,现在,有3万张图片需要缓存,我们希望这些图片被均匀的缓存到这3台服务器上,以便它们能够分摊缓存的压力。也就是说,我们希望每台服务器能够缓存1万张左右的图片,那么,我们应该怎样做呢?如果我们没有任何规律的将3万张图片平均的缓存在3台服务器上,可以满足我们的要求吗?可以!但是如果这样做,当我们需要访问某个缓存项时,则需要遍历3台缓存服务器,从3万个缓存项中找到我们需要访问的缓存,遍历的过程效率太低,时间太长,当我们找到需要访问的缓存项时,时长可能是不能被接受的,也就失去了缓存的意义,缓存的目的就是提高速度,改善用户体验,减轻后端服务器压力,如果每次访问一个缓存项都需要遍历所有缓存服务器的所有缓存项,想想就觉得很累,那么,我们该怎么办呢?原始的做法是对缓存项的键进行哈希,将hash后的结果对缓存服务器的数量进行取模操作,通过取模后的结果,决定缓存项将会缓存在哪一台服务器上,这样说可能不太容易理解,我们举例说明,仍然以刚才描述的场景为例,假设我们使用图片名称作为访问图片的key,假设图片名称是不重复的,那么,我们可以使用如下公式,计算出图片应该存放在哪台服务器上。

hash(图片名称)% N

因为图片的名称是不重复的,所以,当我们对同一个图片名称做相同的哈希计算时,得出的结果应该是不变的,如果我们有3台服务器,使用哈希后的结果对3求余,那么余数一定是0、1或者2,没错,正好与我们之前的服务器编号相同,如果求余的结果为0, 我们就把当前图片名称对应的图片缓存在0号服务器上,如果余数为1,就把当前图片名对应的图片缓存在1号服务器上,如果余数为2,同理,那么,当我们访问任意一个图片的时候,只要再次对图片名称进行上述运算,即可得出对应的图片应该存放在哪一台缓存服务器上,我们只要在这一台服务器上查找图片即可,如果图片在对应的服务器上不存在,则证明对应的图片没有被缓存,也不用再去遍历其他缓存服务器了,通过这样的方法,即可将3万张图片随机的分布到3台缓存服务器上了,而且下次访问某张图片时,直接能够判断出该图片应该存在于哪台缓存服务器上,这样就能满足我们的需求了,我们暂时称上述算法为HASH算法或者取模算法,取模算法的过程可以用下图表示。

hash.png

但是,使用上述HASH算法进行缓存时,会出现一些缺陷,试想一下,如果3台缓存服务器已经不能满足我们的缓存需求,那么我们应该怎么做呢?没错,很简单,多增加两台缓存服务器不就行了,假设,我们增加了一台缓存服务器,那么缓存服务器的数量就由3台变成了4台,此时,如果仍然使用上述方法对同一张图片进行缓存,那么这张图片所在的服务器编号必定与原来3台服务器时所在的服务器编号不同,因为除数由3变为了4,被除数不变的情况下,余数肯定不同,这种情况带来的结果就是当服务器数量变动时,所有缓存的位置都要发生改变,换句话说,当服务器数量发生改变时,所有缓存在一定时间内是失效的,当应用无法从缓存中获取数据时,则会向后端服务器请求数据,同理,假设3台缓存中突然有一台缓存服务器出现了故障,无法进行缓存,那么我们则需要将故障机器移除,但是如果移除了一台缓存服务器,那么缓存服务器数量从3台变为2台,如果想要访问一张图片,这张图片的缓存位置必定会发生改变,以前缓存的图片也会失去缓存的作用与意义,由于大量缓存在同一时间失效,造成了缓存的雪崩,此时前端缓存已经无法起到承担部分压力的作用,后端服务器将会承受巨大的压力,整个系统很有可能被压垮,所以,我们应该想办法不让这种情况发生,但是由于上述HASH算法本身的缘故,使用取模法进行缓存时,这种情况是无法避免的,为了解决这些问题,一致性哈希算法诞生了。

 

我们来回顾一下使用上述算法会出现的问题。

问题1:当缓存服务器数量发生变化时,会引起缓存的雪崩,可能会引起整体系统压力过大而崩溃(大量缓存同一时间失效)。

问题2:当缓存服务器数量发生变化时,几乎所有缓存的位置都会发生改变,怎样才能尽量减少受影响的缓存呢?

 

其实,上面两个问题是一个问题,那么,一致性哈希算法能够解决上述问题吗?

我们现在就来了解一下一致性哈希算法。

 

一致性哈希算法的基本概念

其实,一致性哈希算法也是使用取模的方法,只是,刚才描述的取模法是对服务器的数量进行取模,而一致性哈希算法是对2^32取模,什么意思呢?我们慢慢聊。

 

首先,我们把二的三十二次方想象成一个圆,就像钟表一样,钟表的圆可以理解成由60个点组成的圆,而此处我们把这个圆想象成由2^32个点组成的圆,示意图如下:

圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1

我们把这个由2的32次方个点组成的圆环称为hash环。

 

那么,一致性哈希算法与上图中的圆环有什么关系呢?我们继续聊,仍然以之前描述的场景为例,假设我们有3台缓存服务器,服务器A、服务器B、服务器C,那么,在生产环境中,这三台服务器肯定有自己的IP地址,我们使用它们各自的IP地址进行哈希计算,使用哈希后的结果对2^32取模,可以使用如下公式示意。

hash(服务器A的IP地址) %  2^32

通过上述公式算出的结果一定是一个0到2^32-1之间的一个整数,我们就用算出的这个整数,代表服务器A,既然这个整数肯定处于0到2^32-1之间,那么,上图中的hash环上必定有一个点与这个整数对应,而我们刚才已经说明,使用这个整数代表服务器A,那么,服务器A就可以映射到这个环上,用下图示意

同理,服务器B与服务器C也可以通过相同的方法映射到上图中的hash环中

hash(服务器B的IP地址) %  2^32

hash(服务器C的IP地址) %  2^32

通过上述方法,可以将服务器B与服务器C映射到上图中的hash环上,示意图如下

假设3台服务器映射到hash环上以后如上图所示(当然,这是理想的情况,我们慢慢聊)。

 

好了,到目前为止,我们已经把缓存服务器与hash环联系在了一起,我们通过上述方法,把缓存服务器映射到了hash环上,那么使用同样的方法,我们也可以将需要缓存的对象映射到hash环上。

 

假设,我们需要使用缓存服务器缓存图片,而且我们仍然使用图片的名称作为找到图片的key,那么我们使用如下公式可以将图片映射到上图中的hash环上。

hash(图片名称) %  2^32

映射后的示意图如下,下图中的橘黄色圆形表示图片

好了,现在服务器与图片都被映射到了hash环上,那么上图中的这个图片到底应该被缓存到哪一台服务器上呢?上图中的图片将会被缓存到服务器A上,为什么呢?因为从图片的位置开始,沿顺时针方向遇到的第一个服务器就是A服务器,所以,上图中的图片将会被缓存到服务器A上,如下图所示。

没错,一致性哈希算法就是通过这种方法,判断一个对象应该被缓存到哪台服务器上的,将缓存服务器与被缓存对象都映射到hash环上以后,从被缓存对象的位置出发,沿顺时针方向遇到的第一个服务器,就是当前对象将要缓存于的服务器,由于被缓存对象与服务器hash后的值是固定的,所以,在服务器不变的情况下,一张图片必定会被缓存到固定的服务器上,那么,当下次想要访问这张图片时,只要再次使用相同的算法进行计算,即可算出这个图片被缓存在哪个服务器上,直接去对应的服务器查找对应的图片即可。

 

刚才的示例只使用了一张图片进行演示,假设有四张图片需要缓存,示意图如下

1号、2号图片将会被缓存到服务器A上,3号图片将会被缓存到服务器B上,4号图片将会被缓存到服务器C上。

 

一致性哈希算法的优点

经过上述描述,我想兄弟你应该已经明白了一致性哈希算法的原理了,但是话说回来,一致性哈希算法能够解决之前出现的问题吗,我们说过,如果简单的对服务器数量进行取模,那么当服务器数量发生变化时,会产生缓存的雪崩,从而很有可能导致系统崩溃,那么使用一致性哈希算法,能够避免这个问题吗?我们来模拟一遍,即可得到答案。

 

假设,服务器B出现了故障,我们现在需要将服务器B移除,那么,我们将上图中的服务器B从hash环上移除即可,移除服务器B以后示意图如下。

在服务器B未移除时,图片3应该被缓存到服务器B中,可是当服务器B移除以后,按照之前描述的一致性哈希算法的规则,图片3应该被缓存到服务器C中,因为从图片3的位置出发,沿顺时针方向遇到的第一个缓存服务器节点就是服务器C,也就是说,如果服务器B出现故障被移除时,图片3的缓存位置会发生改变

 

但是,图片4仍然会被缓存到服务器C中,图片1与图片2仍然会被缓存到服务器A中,这与服务器B移除之前并没有任何区别,这就是一致性哈希算法的优点,如果使用之前的hash算法,服务器数量发生改变时,所有服务器的所有缓存在同一时间失效了,而使用一致性哈希算法时,服务器的数量如果发生改变,并不是所有缓存都会失效,而是只有部分缓存会失效,前端的缓存仍然能分担整个系统的压力,而不至于所有压力都在同一时间集中到后端服务器上。

 

这就是一致性哈希算法所体现出的优点。

 

hash环的偏斜

在介绍一致性哈希的概念时,我们理想化的将3台服务器均匀的映射到了hash环上,如下图所示

但是,理想很丰满,现实很骨感,我们想象的与实际情况往往不一样。

在实际的映射中,服务器可能会被映射成如下模样。

聪明如你一定想到了,如果服务器被映射成上图中的模样,那么被缓存的对象很有可能大部分集中缓存在某一台服务器上,如下图所示。

上图中,1号、2号、3号、4号、6号图片均被缓存在了服务器A上,只有5号图片被缓存在了服务器B上,服务器C上甚至没有缓存任何图片,如果出现上图中的情况,A、B、C三台服务器并没有被合理的平均的充分利用,缓存分布的极度不均匀,而且,如果此时服务器A出现故障,那么失效缓存的数量也将达到最大值,在极端情况下,仍然有可能引起系统的崩溃,上图中的情况则被称之为hash环的偏斜,那么,我们应该怎样防止hash环的偏斜呢?一致性hash算法中使用”虚拟节点”解决了这个问题,我们继续聊。

 

虚拟节点

话接上文,由于我们只有3台服务器,当我们把服务器映射到hash环上的时候,很有可能出现hash环偏斜的情况,当hash环偏斜以后,缓存往往会极度不均衡的分布在各服务器上,聪明如你一定已经想到了,如果想要均衡的将缓存分布到3台服务器上,最好能让这3台服务器尽量多的、均匀的出现在hash环上,但是,真实的服务器资源只有3台,我们怎样凭空的让它们多起来呢,没错,就是凭空的让服务器节点多起来,既然没有多余的真正的物理服务器节点,我们就只能将现有的物理节点通过虚拟的方法复制出来,这些由实际节点虚拟复制而来的节点被称为”虚拟节点”。加入虚拟节点以后的hash环如下。

“虚拟节点”是”实际节点”(实际的物理服务器)在hash环上的复制品,一个实际节点可以对应多个虚拟节点。

从上图可以看出,A、B、C三台服务器分别虚拟出了一个虚拟节点,当然,如果你需要,也可以虚拟出更多的虚拟节点。引入虚拟节点的概念后,缓存的分布就均衡多了,上图中,1号、3号图片被缓存在服务器A中,5号、4号图片被缓存在服务器B中,6号、2号图片被缓存在服务器C中,如果你还不放心,可以虚拟出更多的虚拟节点,以便减小hash环偏斜所带来的影响,虚拟节点越多,hash环上的节点就越多,缓存被均匀分布的概率就越大。

原文链接:白话解析:一致性哈希算法 consistent hashing

标签:缓存,hash,consistent,算法,哈希,服务器,hashing,图片
From: https://www.cnblogs.com/cxy2020/p/17598860.html

相关文章

  • 什么是哈希?
    Refhttps://blog.dvsj.in/hashing/......
  • 哈希表
    哈希表作用:将庞大的空间,映射到小的空间,集中数据,一般用取模,取模的数尽量取质数,最大程度减小冲突操作:一般是添加和查找元素,删除元素通常有一个标记数组,对元素标记为已删除离散化相似,离散化是特殊的哈希方式,离散化处理的数据是单调的,相对位置不变映射会出现冲突,如将两个不同......
  • [代码随想录]Day05-哈希表 part01
    题目:242.有效的字母异位词思路:很简单,就是看两个字符串每个字母出现的次数是不是相同的。可以用两个数组来比较,也可以用一个数组比较。代码:一个数组funcisAnagram(sstring,tstring)bool{isExist:=[26]int{}//26个字母for_,ch:=ranges{isE......
  • 代码随想录-哈希表-c++总结
    哈希表内容整体简单,关键是要有利用map映射的思想,以及巩固一些c++标准库的操作这次三数之和一题没有直接做出来,关键在于如何查重一点比较绕15.三数之和-力扣(LeetCode)利用排序+双指针解决三数之和的思路更加清楚此外,四数之和中,四个数相加会溢出int,应改为 ......
  • 哈希函数如何工作 ?
    动动发财的小手,点个赞吧!作为一名程序员,您每天都会使用哈希函数。它们在数据库中用于优化查询,在数据结构中用于使速度更快,在安全性中用于保证数据安全。几乎每次与技术的交互都会以某种方式涉及哈希函数。哈希函数是基础函数,而且无处不在。但什么是哈希函数,它们如何工作?在这篇文......
  • 【算法】哈希学习笔记
    1.哈希(hash)简介1.1前言又来写算法总结了qwq。今天是2023/7/8,期末考试已经考完了。初二下注定是一个煎熬的学期,所以我在这一学期并没有学什么新算法,OI也没什么长进。但倒是深造了几个算法,比如:dp,hash,线段树。之前一直想写一篇hash的学习笔记,但由于种种原因,并没有写成。于......
  • 41. 缺失的第一个正数(原地哈希)
    给你一个未排序的整数数组nums,请你找出其中没有出现的最小的正整数。请你实现时间复杂度为O(n)并且只使用常数级别额外空间的解决方案。示例1:输入:nums=[1,2,0]输出:3>思路原地哈希就相当于,让每个数字n都回到下标为n-1的家里。而那些没有回到家里的就成了孤魂野鬼......
  • Template <字符串哈希>
    #include<iostream>#include<string>#include<vector>usingnamespacestd;usingULL=unsignedlonglong;//字符串哈希(注意get(l,r)为闭区间,字符串下标从1开始)structStringHash{vector<ULL>h;//哈希数组vector<ULL>p;//p[i]=P......
  • 在Java和C#中计算SHA-1哈希
    Java版本:publicvoidtestHash(){Stringpassword="Test";byte[]key=password.getBytes();MessageDigestmd=MessageDigest.getInstance("SHA-1");byte[]hash=md.digest(key);Stringresult="";for(byteb:hash){res......
  • 【原创】在 VBScript 中使用哈希表(Hashtable)
    环境要求WindowsXP及以上。Windows10、Windows11在Windows功能中勾选.NETFramework3.5(包括.NET2.0和3.0)。使用创建一个Hashtable对象:SetoHT=CreateObject("System.Collections.Hashtable")Count属性:返回表中键值对的数量SetoHT=CreateObj......