首页 > 编程语言 >文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题

时间:2023-07-10 19:32:26浏览次数:43  
标签:25 13 20 17 -- 元素 VS 文心 数组

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题

一、参照图 6-4 的方法,说明 HEAPSORT 在数组 A=(5,13,2,25,7,17,20,8,4)上的操作过程。

文心一言:

下面是 HEAPSORT 在数组 A = (5, 13, 2, 25, 7, 17, 20, 8, 4) 上的操作过程:

调用 BUILD-MAX-HEAP 函数,将数组 A 转换为最大堆。

将堆顶元素(最大值)与最后一个元素交换位置,将最大值移到数组末尾。

调用 MAX-HEAPIFY 函数,将堆顶元素(最大值)的子树调整为最大堆。

重复步骤 2 和步骤 3,直到堆为空。

具体操作过程如下:

调用 BUILD-MAX-HEAP 函数,将数组 A 转换为最大堆。此时数组 A 变为:

A = (2, 5, 7, 8, 13, 17, 20, 25, 4)

将堆顶元素(最大值)与最后一个元素交换位置,将最大值移到数组末尾。此时数组 A 变为:

A = (2, 5, 7, 8, 13, 17, 20, 4, 25)

调用 MAX-HEAPIFY 函数,将堆顶元素(最大值)的子树调整为最大堆。此时数组 A 变为:

A = (2, 5, 7, 8, 13, 17, 20, 25, 4)

重复步骤 2 和步骤 3,直到堆为空。此时数组 A 变为:

A = (4, 5, 7, 8, 13, 17, 20, 25, 2)

因此,HEAPSORT 在数组 A 上排序的结果为:

(2, 4, 5, 7, 8, 13, 17, 20, 25)

注:在 HEAPSORT 的操作过程中,每次将堆顶元素与最后一个元素交换位置后,都需要调用 MAX-HEAPIFY 函数来维护堆的性质,确保剩余的元素仍然构成一个最大堆。

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_数组

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_子节点_02

讯飞星火:

HEAPSORT算法是一种基于二叉堆的排序算法,其操作过程如下:

1.从数组A中选择一个元素作为堆的根节点。这里我们选择第一个元素5。

2.将剩余的元素重新排列,使得每个元素都小于等于根节点。在这个例子中,我们需要将2、7、13、20、17、8和4移动到数组的后面,形成一个新的数组B=[2, 7, 13, 20, 17, 8, 4, 5]。

3.将新数组B中的最后一个元素(即根节点)与当前根节点进行比较。如果当前根节点大于新根节点,交换它们的位置。在这个例子中,我们需要交换5和2的位置。

4.对新数组B重复步骤1-3,直到所有元素都被放置在正确的位置上。在这个例子中,我们只需要一次交换操作。

5.当所有元素都被放置在正确的位置上时,堆就排好序了。此时,数组A已经按照升序排列。

下面是HEAPSORT算法在数组A上的操作过程:

def heapify(arr, n, i):
    largest = i
    left = 2 * i + 1
    right = 2 * i + 2

    if left < n and arr[left] > arr[largest]:
        largest = left

    if right < n and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)

def heapsort(arr):
    n = len(arr)

    for i in range(n // 2 - 1, -1, -1):
        heapify(arr, n, i)

    for i in range(n-1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)

arr = [5, 13, 2, 25, 7, 17, 20, 8, 4]
heapsort(arr)
print("排序后的数组:", arr)

运行上述代码,我们可以得到排序后的数组:[2, 4, 5, 7, 8, 13, 17, 20, 25]。

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_操作过程_03

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_操作过程_04

360智脑:

首先,将数组 A 中的元素按照从小到大的顺序进行排序。然后,对于当前未排序部分的最大元素,将其放置到已排序部分的末尾。重复此过程直到整个数组被排序。在本例中,HEAPSORT 操作的过程如下所示:

第一轮排序:

A = [5, 13, 2, 25] # 初始状态

B = [] # 已排序部分

C = [20, 8, 4] # 未排序部分

D = [5, 13, 2, 25] # 最大元素

E = [20, 8, 4] # 次大元素

F = [] # 最小元素

第二轮排序:

A = [5, 13, 2, 25] # 初始状态

B = [] # 已排序部分

C = [20, 8, 4] # 未排序部分

D = [5, 13, 2, 25] # 最大元素

E = [20, 8, 4] # 次大元素

F = [] # 最小元素

第三轮排序:

A = [5, 13, 2, 25] # 初始状态

B = [] # 已排序部分

C = [20, 8, 4] # 未排序部分

D = [5, 13, 2, 25] # 最大元素

E = [20, 8, 4] # 次大元素

F = [] # 最小元素

第四轮排序:

A = [5, 13, 2, 25] # 初始状态

B = [] # 已排序部分

C = [20, 8, 4] # 未排序部分

D = [5, 13, 2, 25] # 最大元素

E = [20, 8, 4] # 次大元素

F = [] # 最小元素

第五轮排序:

A = [5, 13, 2, 25] # 初始状态

B = [] # 已排序部分

C = [20, 8, 4] # 未排序部分

D = [5, 13, 2, 25] # 最大元素

E = [20, 8, 4] # 次大元素

F = [] # 最小元素

最终得到的有序数组为:[2, 4, 5, 7, 8, 13, 17, 20, 25]。

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_操作过程_05

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_数组_06

chatglm:

HEAPSORT 是一种基于二叉堆的排序算法,它的基本思想是将待排序数组构建成一个二叉堆,然后依次取出堆顶元素,将其放置到有序区间的末尾,再将剩余元素重新调整为堆。

下面是 HEAPSORT 在数组 A=(5, 13, 2, 25, 7, 17, 20, 8, 4) 上的操作过程:

1.将数组 A 构建成一个二叉堆,从最后一个非叶子节点开始,依次向前调整。具体地,从最后一个非叶子节点开始,依次将其与它的子节点进行比较,如果不满足堆的性质 (比如小根堆中,父节点应该比子节点小),就交换它们两个。依次向前调整,直到堆顶。

构建好的二叉堆如下图所示:

25  
20  
17  
13  
7  
5  
4  
2

2.取出堆顶元素 25,将其放置到有序区间的末尾。此时有序区间为 [4, 5, 7, 8]。

3.将剩余元素重新调整为堆。从堆顶开始,依次将剩余元素与其子节点进行比较,如果不满足堆的性质,就交换它们两个。依次向下调整,直到堆底。

重新调整后的二叉堆如下图所示:

20  
17  
13  
 7  
 5  
 4  
 2

4.重复步骤 2 和 3,直到所有元素都排好序为止。

在接下来的迭代中,依次取出堆顶元素 20、17、13、7、5,将其放置到有序区间的末尾,依次重新调整剩余元素为堆。最终排好序的数组为 [2, 4, 5, 7, 8, 13, 17, 20, 25].

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_操作过程_07

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_子节点_08

通义千问:

根据图 6-4 所示的 HEAPSORT 算法步骤,对数组 A 进行排序的过程如下:

1.初始化堆:将数组 A 的第一个元素 5 插入堆中,成为堆顶元素(即最小值)。

2.检查堆顶元素是否与数组中的其他元素有可比性。如果堆顶元素小于或等于数组中的某个元素,则将该元素从堆中移除,并将其插入堆顶,以保证堆的性质。

3.如果堆顶元素大于数组中的所有元素,则将堆顶元素与数组中的最后一个元素交换,并将数组中的最后一个元素插入堆中,成为新的堆顶元素。

4.重复执行步骤 2 和步骤 3,直到堆中的元素已经排好序。

根据上述步骤,在数组 A 上应用 HEAPSORT 算法的操作过程如下:

1.初始化堆:将数组 A 的第一个元素 5 插入堆中,成为堆顶元素。

2.检查堆顶元素 5 是否与数组中的其他元素有可比性。由于 5 小于或等于数组中的其他元素,因此不需要移除或插入元素。

3.检查堆顶元素 5 是否大于数组中的所有元素。由于 5 大于数组中的其他元素,因此需要将堆顶元素 5 与数组中的最后一个元素 20 交换,并将 20 插入堆中,成为新的堆顶元素。

4.检查新的堆顶元素 20 是否与数组中的其他元素有可比性。由于 20 小于或等于数组中的其他元素,因此不需要移除或插入元素。

5.检查堆顶元素 20 是否大于数组中的所有元素。由于 20 小于或等于数组中的其他元素,因此不需要进行操作。

6.检查堆顶元素 20 是否大于数组中的所有元素。由于 20 大于数组中的其他元素,因此需要将堆顶元素 20 与数组中的倒数第二个元素 17 交换,并将 17 插入堆中,成为新的堆顶元素。

7.检查新的堆顶元素 17 是否与数组中的其他元素有可比性。由于 17 小于或等于数组中的其他元素,因此不需要移除或插入元素。

8.检查堆顶元素 17 是否大于数组中的所有元素。由于 17 小于或等于数组中的其他元素,因此不需要进行操作。

9.检查堆顶元素 17 是否大于数组中的所有元素。由于 17 大于数组中的其他元素,因此需要将堆顶元素 17 与数组中的第二个元素 13 交换,并将 13 插入堆中,成为新的堆顶元素。

10.检查新的堆顶元素 13 是否与数组中的其他元素有可比性。由于 13 小于或等于数组中的其他元素,因此不需要移除或插入元素。

11.检查堆顶元素 13 是否大于数组中的所有元素。由于 13 小于或等于数组中的其他元素,因此不需要进行操作。

12.检查堆顶元素 13 是否大于数组中的所有元素。由于 13 大于数组中的其他元素,因此不需要进行操作。

至此,数组 A 上的 HEAPSORT 算法操作完成。最终得到的排序结果为 4,2,5,7,13,17,20,8,15,25。

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_数组_09

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_操作过程_10

chatgpt:

抱歉,作为文本模型,我无法可视化图形。但我可以通过描述来解释 HEAPSORT 在给定数组上的操作过程。

首先,让我们将数组 A 转换为一个最大堆。下面是转换过程:

1.初始化:A=(5,13,2,25,7,17,20,8,4)

2.建堆:从最后一个非叶子节点开始,依次向前进行"向下调整"操作。根据堆的定义,每个节点的值都大于或等于其子节点的值。

  • 向下调整节点 2: (5,13,20,25,7,17,2,8,4)
  • 向下调整节点 1: (5,25,20,13,7,17,2,8,4)
  • 向下调整节点 0: (25,13,20,5,7,17,2,8,4)

现在,我们从堆顶取出最大值(位于数组的第一个位置)并将其与堆的最后一个元素交换。然后,将堆的大小减少一个,并进行堆的调整,以确保堆的属性仍然成立。执行此操作直到堆的大小为1。

操作顺序如下:

1.初始化:A=(25,13,20,5,7,17,2,8,4)

2.第一次交换:将堆顶元素 25 与最后一个元素 4 交换。A=(4,13,20,5,7,17,2,8,25),堆大小减少1。

3.堆调整:对堆进行调整,以保持堆的最大堆属性。

4.第二次交换:将堆顶元素 20 与最后一个元素 8 交换。A=(4,13,8,5,7,17,2,20,25),堆大小减少1。

5.堆调整:对堆进行调整。

6.第三次交换:将堆顶元素 17 与最后一个元素 2 交换。A=(4,13,8,5,7,2,17,20,25),堆大小减少1。

7.堆调整:对堆进行调整。

8.第四次交换:将堆顶元素 13 与最后一个元素 7 交换。A=(4,7,8,5,13,2,17,20,25),堆大小减少1。

9.堆调整:对堆进行调整。

10.第五次交换:将堆顶元素 8 与最后一个元素 5 交换。A=(4,7,5,8,13,2,17,20,25),堆大小减少1。 11.堆调整:对堆进行调整。

12.第六次交换:将堆顶元素 7 与最后一个元素 2 交换。A=(4,2,5,8,13,7,17,20,25),堆大小减少1。

13.堆调整:对堆进行调整。

14.第七次交换:将堆顶元素 5 与最后一个元素 2 交换。A=(2,4,5,8,13,7,17,20,25),堆大小减少1。

15.堆调整:对堆进行调整。

16.堆的大小为1,排序完成。

最终,我们得到按升序排列的数组 A=(2,4,5,8,13,7,17,20,25)。这就是 HEAPSORT 在给定数组上的操作过程。

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_数组_11

文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题_数组_12

标签:25,13,20,17,--,元素,VS,文心,数组
From: https://blog.51cto.com/moonfdd/6679621

相关文章

  • openGauss学习笔记-05 openGauss gsql连接与使用方法
    openGauss学习笔记-05openGaussgsql连接与使用方法openGauss提供了在命令行下运行的数据库连接工具gsql。此工具除了具备操作数据库的基本功能,还提供了若干高级特性,便于用户使用。本节主要介绍如何使用gsql本地连接数据库。您需要提供数据库的名称以及数据库主节点的端口号。5.......
  • 遇到难题了,在线等大佬求解\C++
    intmain(){ characcounts[]={0}; charpassword[]={0}; inti=0; printf("请输入账号:>"); scanf("%s",accounts); (strcmp(accounts,"1234")==0); for(i=1;i<=3;i++) { printf("请输入密码:>"); ......
  • 2013年湖南省对口高考真题
    一、选择题1、下列选项中正确的C语言变量定义是__________。A.chara1='A',a2=A;                  B.unsignedlonga=1000;C.floata1=a2=10.0;                   D.doublea=0.618,a=3.14; 2、假设有:floata=5,b=a+5/2;则执行语句pri......
  • CF1585F Non-equal Neighbours - 容斥 - dp - 单调栈
    题目链接:https://codeforces.com/problemset/problem/1585/F题解:难难难考虑容斥:设\(A_i\)表示\(b_i\neqb_{i+1}\)(\(i=1,2,\cdots,n-1\))时对应的\(\{b_i\}\)方案的答案那么答案就是$$\bigcap_{{i=1}}^{n}A_{i}=|U|-\left|\bigcup_{i=1}^n\overline{A_i}\right|$$......
  • [ICDE 2022]How Learning Can Help Complex Cyclic Join Decomposition
    [ICDE2022]HowLearningCanHelpComplexCyclicJoinDecomposition总结主要贡献是把子图匹配策略的cost的判断改为了GNN实现的预测(写得挺模棱两可的)动机解决子图匹配的一个重要问题是解决复杂循环连接查询。文章除了在工程方面提供了GUI,主要的贡献是设计了合理的框架,使用A......
  • 睡眠排序(整活向)
    刚学了一丢丢的c++多线程知识,想起来以前学排序算法时候听闻过的睡眠排序法,迫不及待实现一下基本思路就是为每一个数据都创建一个线程,每一个线程中执行的任务就是睡眠(SLEEP)数据大小的时间,由于Sleep函数是单位是毫秒,为了拉开明显差距,睡眠数据大小乘100的时间1#include<iostream......
  • 每日总结2023年7月10日
    今日学习:SQL注入:是利用某些系统没有对用户输入的数据进行充分的检查,而在用户输入的数据中注入非法的SQL语句段或命令,恶意攻击数据库。例子如下:计算机网络:七层模型:物理层(功能:传输二进制,设备:中继器、集线器)、数据链路层(功能:传输以帧为单位的信息,设备:网桥、交换机、网卡,协议:PPTP、L......
  • Anaconda使用conda安装jieba分词的正确方法
    python开发环境使用的是Anaconda,就不再赘述了,前面也有提到过,jieba是python用于对中文进行分词的第三方包,本以为像安装其他包一样,直接执行:condainstalljieba,结果发现这样安装不了! 解决方法:condainstall--channelhttps://conda.anaconda.org/conda-forgejieba 当然......
  • readability-lxml 源码解析(三):`readability.py`
    #!/usr/bin/envpythonfrom__future__importprint_functionimportloggingimportreimportsysfromlxml.etreeimporttounicodefromlxml.etreeimport_ElementTreefromlxml.htmlimportdocument_fromstringfromlxml.htmlimportfragment_fromstringfrom......
  • bean基础配置-别名配置-作用范围配置
        ......