首页 > 编程语言 >Id 生成 - 雪花算法

Id 生成 - 雪花算法

时间:2023-07-04 09:00:10浏览次数:43  
标签:timestamp 雪花 long ID datacenterId 算法 static Id id

package com.changgou.entity.utils;

import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;

/**
 * <p>名称:IdWorker.java</p>
 * <p>描述:分布式自增长ID</p>
 * <pre>
 *     Twitter的 Snowflake JAVA实现方案
 * </pre>
 * 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
 * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
 * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
 * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
 * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
 * <p>
 * 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
 *
 * @author Polim
 */
public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;

    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;

    public IdWorker(){
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }
    /**
     * @param workerId
     *            工作机器ID
     * @param datacenterId
     *            序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获取下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;

        return nextId;
    }

    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * <p>
     * 获取 maxWorkerId
     * </p>
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
            /*
             * GET jvmPid
             */
            mpid.append(name.split("@")[0]);
        }
        /*
         * MAC + PID 的 hashcode 获取16个低位
         */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }

    /**
     * <p>
     * 数据标识id部分
     * </p>
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }


    public static void main(String[] args) {

        IdWorker idWorker=new IdWorker(0,0);

        for(int i=0;i<10000;i++){
            long nextId = idWorker.nextId();
            System.out.println(nextId);
        }
    }

}

 

标签:timestamp,雪花,long,ID,datacenterId,算法,static,Id,id
From: https://www.cnblogs.com/Rover20230226/p/17524747.html

相关文章

  • 分布式id---雪花算法
    为什么要用分布式id随着业务的增长,后期可能会对数据库进行拆分的操作,通过数据库中间间链接。如果数据库表中的id采取的是自增策略,则会产生重复的id。使用分布式id便是为了避免此类现象。雪花算法snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。其核心思想是:使......
  • nohup、setsid 与 disown 的不同之处【转】
    nohup、setsid与disown都可以用来让需要长期运行的程序在退出终端后继续在后台运行。然而它们实现这一目的的原理不同,因此使用起来也有一些不同。  退出终端时发生了什么  让我们先看看终端退出时发生什么:  当终端被挂断或伪终端程序被关掉,若终端的CLO......
  • 数据结构与算法(一): 稀疏数组
    问题引入在五子棋游戏或类似的游戏中,我们可以把整个棋盘想象成是一个有规律的二维数组,其值由0、1、2三个数字组成,0代表空白区域,1代表白子,2代表黑子。这种情况:即当一个数组中大部分元素为0或者为同一值时,存储该数组数据可以使用稀疏数组来对原始数组进行精简,以减少原始数组中无用......
  • m基于simulink的PID控制器,模糊PID控制器以及MPC控制器性能对比仿真
    1.算法仿真效果matlab2022a仿真结果如下:        从图仿真结果可知,PID控制器,其超调较大,且控制器进入收敛状态时间也最长,。对于模糊PID控制器,其超调小于PID控制器,且收敛速度也较快,因此其性能优于传统的PID控制器。对于MPC控制器,其超调最小,控制器进入稳定状态速度也最快,......
  • m基于MOEA算法的无线传感器网络最优部署matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:     2.算法涉及理论知识概要       无线传感器网络(WirelessSensorNetwork,WSN)是一种分布式传感器网络,由大量的无线传感器节点组成,它们可以自组织、自适应、自愈合,通过无线通信协同完成任务。WSN应用广泛,如环境监......
  • m基于MOEA算法的无线传感器网络最优部署matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要无线传感器网络(WirelessSensorNetwork,WSN)是一种分布式传感器网络,由大量的无线传感器节点组成,它们可以自组织、自适应、自愈合,通过无线通信协同完成任务。WSN应用广泛,如环境监测、农业、医疗等领域。在WSN中,传感......
  • 【算法】基础数据结构
    一、单调栈1.概念满足单调性的栈结构,常用于RMQ问题。2.实现为满足单调性,我们在栈的基础上额外判断以下栈顶元素是否大于/小于当前元素。以下面的序列\(1\;7\;4\;3\;2\;8\)为例,需要求每一个数右边第一个比它大的数。考虑维护单调递减栈,才能保证不会有数没有找到答案便被......
  • 27.final和override关键字
    在C++中,final是一个关键字,用于修饰类的成员变量和成员函数。1.final修饰成员变量:当一个类中的成员变量被声明为final时,它就变成了常量,即它的值不能再被修改。final修饰的成员变量必须在类定义中进行初始化,且只能初始化一次。假设我们有一个名为Person的类,其中包含一个成员变量na......
  • 桶排序算法及其Java实现
    桶排序是一种排序算法,它的原理是将数组分到有限数量的桶里,每个桶再个别排序,最后依次把各个桶中的记录列出来。桶排序的效率取决于映射函数的选择和桶的数量。桶排序适用于数据分布比较均匀,或者比较侧重于区间数量的情况。下面是我为你写的博客正文,希望对你有帮助:桶排序算法及其J......
  • Vue-CoreVideoPlayer 视频播放器组件
    安装cnpminstall-Svue-core-video-player快速使用#在main.js中importVueCoreVideoPlayerfrom'vue-core-video-player'Vue.use(VueCoreVideoPlayer)#默认是英文的'''做国际化'''importVueCoreVideoPlayerfrom'vue-core-video......