首页 > 编程语言 >文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

时间:2023-06-04 20:11:05浏览次数:47  
标签:5.2 指示器 sum 骰子 期望值 VS 文心 点数 随机变量

三、利用指示器随机变量来计算掷n 个骰子之和的期望值。

文心一言:

为了计算掷n个骰子之和的期望值,我们需要先了解一个重要的概念:指示器随机变量。

指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示器随机变量定义为:

I(i)={0,如果第i个骰子的点数为61,如果第i个骰子的点数大于等于2且小于等于5其中,i表示第i个骰子。

有了指示器随机变量,我们可以将掷n个骰子之和的期望值计算为:

E(X)=n×E(I(1))=n×(15/6)=52n/6

其中,X表示掷n个骰子得到的总点数,E(X)表示X的期望值。因为每次掷骰子,有1/6的概率得到6点,5/6的概率得到其他点数,所以期望值可以表示为n × (15/6)。

因此,掷n个骰子之和的期望值为52n/6。

在这里插入图片描述

讯飞星火:

代码解决方案:

在Python中,可以使用random模块来生成随机数。要计算掷n个骰子之和的期望值,可以使用指示器随机变量来表示每个骰子的点数,并使用二项式分布来计算期望值。

以下是一个示例代码,演示如何使用指示器随机变量来计算掷n个骰子之和的期望值:

python
import random
# 定义指示器随机变量
dice = [1, 2, 3, 4, 5, 6]
def dice_sum(n):
    # 计算二项式分布概率
    p = [1/6.0 for i in range(n+1)]
    p[0] = 0
    p[1] = 1
    for i in range(2, n+1):
        p[i] = p[i-1] + p[i-2]
    # 计算期望值
    s = sum(random.choice(dice) for _ in range(n))
    e = 0
    for i in range(n+1):
        e += p[i]*s
        s += random.choice(dice)
    return e
# 测试函数
for n in range(1, 7):
    print('{}: {}'.format(n, dice_sum(n)))

在这个例子中,我们首先定义了一个指示器随机变量dice,它包含了骰子的点数。然后,我们定义了一个名为dice_sum()的函数,它接受一个整数参数n,表示掷骰子的次数。在函数内部,我们使用二项式分布来计算期望值。具体来说,我们首先计算了二项式分布的概率分布函数p,然后使用random.choice()函数从指示器随机变量中选择一个点数,并将其加到总和s中。最后,我们根据二项式分布的公式计算期望值。在每次循环中,我们都调用dice_sum()函数来计算掷不同次数骰子之和的期望值,并将结果打印出来。

在这里插入图片描述

在这里插入图片描述

华为盘古:

要计算掷n个骰子之和的期望值,可以使用随机变量来表示每个骰子的值。具体地说,我们可以定义以下随机变量:

$rand_n(n)$

其中,$rand_n$是随机变量,$n$是掷骰子的个数。

我们可以进行以下计算:

$$rand_n(n-1)$ = $$rand_n(n-2)$ + $$rand_n(n-3)$ + $$rand_n(n-4)$ + $$$$$$$$$$$$$$

在这里插入图片描述

360智脑:

假设有n个骰子,每个骰子的点数为1到6之间的概率相等,那么投掷这n个骰子的期望值为$(1/6)^n * (2*6^n - 1)$。

在这里插入图片描述

chatglm:

掷 n 个骰子之和可以用一个 6 维随机向量来表示,其中每个元素表示掷出每个骰子的结果。假设这个随机向量用 X 表示,那么 X 的期望值可以用以下公式计算:

E(X) = 1 * 6 + 2 * 6 + 3 * 6 + 4 * 6 + 5 * 6 + 6 * 6  

其中,1 表示掷出一个骰子,2 表示掷出两个骰子,以此类推,6 表示掷出所有六个骰子。
这个公式可以用概率论的知识来解释。假设掷 n 个骰子的结果是离散随机变量 X,那么 X 的期望值可以表示为所有可能出现结果的加权平均值。在 6 个骰子中,每个骰子出现的概率都是 1/6,因此每个结果的权重为 1/6。而所有六个骰子可能出现的所有结果一共有 6! 种 (6 的阶乘),因此所有结果的权重之和为 6!。因此,掷 n 个骰子之和的期望值可以表示为:

E(X) = Σ[i=1,n] (1/6) * P(X=i)  

其中,P(X=i) 表示掷 n 个骰子中出现 i 个骰子的概率。
由于 X 是一个 6 维随机向量,因此要计算它的期望值需要使用分布式计算或者 GPU 计算,否则计算量会非常大。

在这里插入图片描述

chatgpt:

设每个骰子的点数为 $X_i$,则总点数为 $S_n = \sum_{i=1}^{n} X_i$,其中 $X_i$ 相互独立且都服从于离散型均匀分布 $U(1,6)$,即 $P(X_i = k) = \frac{1}{6}$,其中 $k \in {1,2,3,4,5,6}$。

因为指示器随机变量只有两个可能取值,因此我们可以考虑将每一个 $X_i$ 表示为一个指示器随机变量 $Y_i$,其中当 $X_i = k$ 时 $Y_i = 1$,当 $X_i \neq k$ 时 $Y_i = 0$。因此,每个 $X_i$ 可以写作 $X_i = \sum_{k=1}^{6} k Y_i(k)$,其中 $Y_i(k)$ 表示在第 $i$ 次掷骰子时第 $i$ 个骰子点数是否为 $k$。

考虑到每个骰子的点数 $X_i$ 都可以表示为指示器随机变量 $Y_i$ 的线性组合,因此我们可以利用线性性质和期望的定义来计算 $S_n$ 的期望值 $\mathrm{E}(S_n)$:

$$
\begin{aligned}
\mathrm{E}(S_n) &= \mathrm{E}\left[\sum_{i=1}^{n} X_i\right] \
&= \mathrm{E}\left[\sum_{i=1}^{n} \left(\sum_{k=1}^{6} k Y_i(k)\right)\right] \
&= \sum_{k=1}^{6} k \mathrm{E}\left[\sum_{i=1}^{n} Y_i(k)\right] \
&= \sum_{k=1}^{6} k \mathrm{E}(Y_1(k)) \quad (\textrm{因为 }Y_i(k)\textrm{ 相互独立})\
&= \sum_{k=1}^{6} k P(X_1 = k) \
&= \sum_{k=1}^{6} k \frac{1}{6} \
&= \frac{7}{2}n
\end{aligned}
$$

因此,掷 $n$ 个骰子的总点数的期望值为 $\dfrac{7}{2}n$。

在这里插入图片描述

在这里插入图片描述

标签:5.2,指示器,sum,骰子,期望值,VS,文心,点数,随机变量
From: https://www.cnblogs.com/moonfdd/p/17456224.html

相关文章

  • vscode去除斜体注释
    在设置里面打开setting.json文件在大括号后面追加下面的代码//去除斜体注释"editor.tokenColorCustomizations":{"textMateRules":[{"name":"Comment","scope":["comment","comment.block&......
  • vscode插件开发----如何向输出通道中输出信息
    插件有时候需要输出一些信息,那么如何在输出通道中显示呢?使用如下代码即可:varoutputChannel:vscode.OutputChannel;//输出通道/***输出信息到控制台上,输出通道为MyCoder*@parammessage输出的文本信息*/exportfunctionmylog(message:string){if(outputC......
  • vscode插件开发----获得当前打开的文件名
    采用下面代码即可:importvscode=require('vscode');//激活函数,是首先要调用的exportfunctionactivate(context:any){//注册一个命令letdisposable=vscode.commands.registerCommand('codeStat.countCurFile',function(){leteditor=vscode.window.......
  • 23.5.29-6.4 每周总结
    本周是考试周,我参加了数据库,web,体育等多门课程的考试。考试内容涵盖了各个学期的知识点和实践能力,题型形式多样。在考试过程中,我尽力发挥自己的实力和水平,同时也充分体验到学习和复习的重要性。目前正在备考下周的多门专业课考试。......
  • 读<Wireshark数据包分析实战-第3版>之255.255.255.255
    255.255.255.255是一个特殊的IPv4地址,被称为受限广播地址(LimitedBroadcastAddress)。当一个设备发送一个数据包到255.255.255.255,网络中所有连接在同一局域网(LAN)的设备都会收到并处理该数据包。受限广播地址主要用于以下场景:在没有分配IP地址之前,设备使用它来寻找DHCP......
  • vscode插件开发----在编辑栏上增加菜单项
    在package.json做如下配置:"contributes":{"commands":[{"command":"codeStat.countCurFile","title":"统计当前文件"}],"menus":{"editor/t......
  • 在 VS Code 中使用 GitHub Actions 以及 在仓库中创建一个 .github/workflows 目录
    在VSCode中使用GitHubActions需要完成以下步骤:1.首先,需要在GitHub上创建一个仓库,并在仓库中创建一个`.github/workflows`目录,用于存放GitHubActions的工作流文件。2.在VSCode中打开该仓库,并在左侧的“资源管理器”中选择`.github/workflows`目录。3.右键......
  • “AIR SDK 0.0: AIR SDK location “...\devsdks\AIRSDK\Win” does not exist.”
    导入AS3项目时提示“AIRSDK0.0:AIRSDKlocation“D:\ProgramFiles\Adob5eFlashBuilder4.7\eclipse\plugins\com.adobe.flexbuilder.flex_4.7.0.349722\devsdks\AIRSDK\Win”doesnotexist.”是AS3项目找不见AIRSDK.打开项目配置ActionScriptBuildPath,路径出错......
  • VSCode 如何将已编辑好的python文件中的 tab 键缩进转换成4个空格键缩进
    事情起源:使用vscode维护一个7年前的python项目,发现编辑后运行报错,提示缩进错误,原因是当时的项目使用tab做缩进,而我正在用的vscode是使用4空格做缩进,因此造成了缩进不匹配的问题。  如何解决?把自己的vscode缩进从4空格改为tab貌似是最可行的,但是考虑其他项目的匹配问题又总不能老......
  • 使用vscode sftp插件快速上传源码文件
    1.首先安装vscode插件2.使用ctrl+shift+p或者view-commandpalette打开命令面板,输入sftp并按enter键,出现编辑配置文件界面3.输入对应的主机名,密码,或者密钥文件即可{"name":"47.100.101.152","host":"47.100.101.152","protocol":"sftp",......