最近在看连续控制问题,看到了一个Actor-Critic算法中手动扩展features和设置linear baseline的方法,这些方法源自论文:《Benchmarking Deep Reinforcement Learning for Continuous Control》。
对于低维的features我们可以手动扩展:
代码实现:
return torch.cat([observations, observations ** 2, al, al ** 2, al ** 3, ones], dim=2)
-----------------------------------------------------
linear baseline,在AC算法中给Critic降低方差之用,给出一种简单的线性拟合方式,使用最小二乘法拟合:
代码:
def fit(self, episodes):
# sequence_length * batch_size x feature_size
featmat = self._feature(episodes).view(-1, self.feature_size)
# sequence_length * batch_size x 1
returns = episodes.returns.view(-1, 1)
reg_coeff = self._reg_coeff
eye = torch.eye(self.feature_size, dtype=torch.float32,
device=self.linear.weight.device)
for _ in range(5):
try:
coeffs = torch.linalg.lstsq(
torch.matmul(featmat.t(), featmat) + reg_coeff * eye,
torch.matmul(featmat.t(), returns)
).solution
break
except RuntimeError:
reg_coeff += 10
else:
raise RuntimeError('Unable to solve the normal equations in '
'`LinearFeatureBaseline`. The matrix X^T*X (with X the design '
'matrix) is not full-rank, regardless of the regularization '
'(maximum regularization: {0}).'.format(reg_coeff))
self.linear.weight.data = coeffs.data.t()
===============================================
详细代码地址:
https://gitee.com/devilmaycry812839668/MAML-Pytorch-RL/blob/master/maml_rl/baseline.py
标签:linear,self,torch,coeff,Actor,Critic,reg,size From: https://blog.51cto.com/u_15642578/6408707