首页 > 编程语言 >【模型部署 01】C++实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

【模型部署 01】C++实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

时间:2023-05-26 23:48:16浏览次数:69  
标签:std OpenVINO 部署 auto 模型 cv int onnx image

深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。

以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:

结论:GPU加速首选TensorRT;CPU加速首选OpenVINO;如果需要兼具CPU和GPU推理功能,可以选择ONNXRuntime。

下一篇内容:【模型部署 02】Python实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

1. 环境配置

1.1 OpenCV DNN

  【模型部署】OpenCV4.6.0+CUDA11.1+VS2019环境配置

1.2 ONNXRuntime

  【模型部署】在C++和Python中配置ONNXRuntime环境

1.3 TensorRT

  【模型部署】在C++和Python中搭建TensorRT环境 

1.4 OpenVINO2022

  【模型部署】在C++和Python中配置OpenVINO2022环境

2. PyTorch模型文件(pt/pth/pkl)转ONNX

2.1 pt/pth/pkl互转

PyTorch中支持导出三种后缀格式的模型文件:pt、pth和pkl,这三种格式在存储方式上并无区别,只是后缀不同。三种格式之间的转换比较简单,只需要创建模型并加载模型参数,然后再保存为其他格式即可。

以pth转pt为例:

import torch
import torchvision

# 构建模型
model = torchvision.models.googlenet(num_classes=2, init_weights=True)
# 加载模型参数,pt/pth/pkl三种格式均可
model.load_state_dict(torch.load("googlenet_catdog.pth"))
model.eval()
# 重新保存为所需要转换的格式
torch.save(model.state_dict(), 'googlenet_catdog.pt')

2.2 pt/pth/pkl转ONNX

PyTorch中提供了现成的函数torch.onnx.export(),可将模型文件转换成onnx格式。该函数原型如下:

export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL,
           input_names=None, output_names=None, operator_export_type=None,
           opset_version=None, do_constant_folding=True, dynamic_axes=None,
           keep_initializers_as_inputs=None, custom_opsets=None,
           export_modules_as_functions=False)

主要参数含义:

  • model (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction) :需要转换的模型。
  • args (tuple or torch.Tensor) :args可以被设置为三种形式:
    • 一个tuple,这个tuple应该与模型的输入相对应,任何非Tensor的输入都会被硬编码入onnx模型,所有Tensor类型的参数会被当做onnx模型的输入。
      args = (x, y, z)
    • 一个Tensor,一般这种情况下模型只有一个输入。
      args = torch.Tensor([1, 2, 3])
    • 一个带有字典的tuple,这种情况下,所有字典之前的参数会被当做“非关键字”参数传入网络,字典中的键值对会被当做关键字参数传入网络。如果网络中的关键字参数未出现在此字典中,将会使用默认值,如果没有设定默认值,则会被指定为None。
      args = (x,
              {'y': input_y,
               'z': input_z})
      

      NOTE:一个特殊情况,当网络本身最后一个参数为字典时,直接在tuple最后写一个字典则会被误认为关键字传参。所以,可以通过在tuple最后添加一个空字典来解决。

      # 错误写法:
      torch.onnx.export(
          model,
          (x,
           # WRONG: will be interpreted as named arguments
           {y: z}),
          "test.onnx.pb")
       
      # 纠正
      torch.onnx.export(
          model,
          (x,
           {y: z},
           {}),
          "test.onnx.pb") 
  • f:一个文件类对象或一个路径字符串,二进制的protocol buffer将被写入此文件,即onnx文件。
  • export_params (bool, default False) :如果为True则导出模型的参数。如果想导出一个未训练的模型,则设为False。
  • verbose (bool, default False) :如果为True,则打印一些转换日志,并且onnx模型中会包含doc_string信息。
  • training (enum, default TrainingMode.EVAL) :枚举类型包括:
    • TrainingMode.EVAL - 以推理模式导出模型。
    • TrainingMode.PRESERVE - 如果model.training为False,则以推理模式导出;否则以训练模式导出。
    • TrainingMode.TRAINING - 以训练模式导出,此模式将禁止一些影响训练的优化操作。
  • input_names (list of str, default empty list) :按顺序分配给onnx图的输入节点的名称列表。
  • output_names (list of str, default empty list) :按顺序分配给onnx图的输出节点的名称列表。
  • operator_export_type (enum, default None) :默认为OperatorExportTypes.ONNX, 如果Pytorch built with DPYTORCH_ONNX_CAFFE2_BUNDLE,则默认为OperatorExportTypes.ONNX_ATEN_FALLBACK。枚举类型包括:
    • OperatorExportTypes.ONNX - 将所有操作导出为ONNX操作。
    • OperatorExportTypes.ONNX_FALLTHROUGH - 试图将所有操作导出为ONNX操作,但碰到无法转换的操作(如onnx未实现的操作),则将操作导出为“自定义操作”,为了使导出的模型可用,运行时必须支持这些自定义操作。支持自定义操作方法见链接
    • OperatorExportTypes.ONNX_ATEN - 所有ATen操作导出为ATen操作,ATen是Pytorch的内建tensor库,所以这将使得模型直接使用Pytorch实现。(此方法转换的模型只能被Caffe2直接使用)
    • OperatorExportTypes.ONNX_ATEN_FALLBACK - 试图将所有的ATen操作也转换为ONNX操作,如果无法转换则转换为ATen操作(此方法转换的模型只能被Caffe2直接使用)。例如:
      # 转换前:
      graph(%0 : Float):
        %3 : int = prim::Constant[value=0]()
        # conversion unsupported
        %4 : Float = aten::triu(%0, %3)
        # conversion supported
        %5 : Float = aten::mul(%4, %0)
        return (%5)
      
      
      # 转换后:
      graph(%0 : Float):
        %1 : Long() = onnx::Constant[value={0}]()
        # not converted
        %2 : Float = aten::ATen[operator="triu"](%0, %1)
        # converted
        %3 : Float = onnx::Mul(%2, %0)
        return (%3)
  • opset_version (int, default 9) :取值必须等于_onnx_main_opset或在_onnx_stable_opsets之内。具体可在torch/onnx/symbolic_helper.py中找到。例如:
    _default_onnx_opset_version = 9
    _onnx_main_opset = 13
    _onnx_stable_opsets = [7, 8, 9, 10, 11, 12]
    _export_onnx_opset_version = _default_onnx_opset_version
  • do_constant_folding (bool, default False) :是否使用“常量折叠”优化。常量折叠将使用一些算好的常量来优化一些输入全为常量的节点。
  • example_outputs (T or a tuple of T, where T is Tensor or convertible to Tensor, default None) :当需输入模型为ScriptModule 或 ScriptFunction时必须提供。此参数用于确定输出的类型和形状,而不跟踪(tracing)模型的执行。
  • dynamic_axes (dict<string, dict<python:int, string>> or dict<string, list(int)>, default empty dict) :通过以下规则设置动态的维度:
    • KEY(str) - 必须是input_names或output_names指定的名称,用来指定哪个变量需要使用到动态尺寸。
    • VALUE(dict or list) - 如果是一个dict,dict中的key是变量的某个维度,dict中的value是我们给这个维度取的名称。如果是一个list,则list中的元素都表示此变量的某个维度。

代码实现:

import torch
import torchvision

weight_file = 'googlenet_catdog.pt'
onnx_file = 'googlenet_catdog.onnx'

model = torchvision.models.googlenet(num_classes=2, init_weights=True)
model.load_state_dict(torch.load(weight_file, map_location=torch.device('cpu')))

model.eval()

# 单输入单输出,固定batch
input = torch.randn(1, 3, 224, 224)
input_names = ["input"]
output_names = ["output"]
torch.onnx.export(model=model,
                  args=input,
                  f=onnx_file,
                  input_names=input_names,
                  output_names=output_names,
                  opset_version=11,
                  verbose=True)

通过netron.app可视化onnx的输入输出: 

如果需要多张图片同时进行推理,可以通过设置export的dynamic_axes参数,将模型输入输出的指定维度设置为变量。

import torch
import torchvision

weight_file = 'googlenet_catdog.pt'
onne_file = 'googlenet_catdog.onnx'

model = torchvision.models.googlenet(num_classes=2, init_weights=True)
model.load_state_dict(torch.load(weight_file, map_location=torch.device('cpu')))

model.eval()

# 单输入单输出,动态batch
input = torch.randn(1, 3, 224, 224)
input_names = ["input"]
output_names = ["output"]
torch.onnx.export(model=model,
                  args=input,
                  f=onnx_file,
                  input_names=input_names,
                  output_names=output_names,
                  opset_version=11,
                  verbose=True,
                  dynamic_axes={'input': {0: 'batch'}, 'output': {0: 'batch'}})

动态batch的onnx文件输入输出在netron.app可视化如下,其中batch维度是变量的形式,可以根据自己需要设置为大于0的任意整数。

如果模型有多个输入和输出,按照以下形式导出:

# 模型有两个输入和两个输出,动态batch
input1 = torch.randn(1, 3, 256, 192).to(opt.device)
input2 = torch.randn(1, 3, 256, 192).to(opt.device)
input_names = ["input1", "input2"]
output_names = ["output1", "output2"]
torch.onnx.export(model=model,
                  args=(input1, input2),
                  f=opt.onnx_path,
                  input_names=input_names,
                  output_names=output_names,
                  opset_version=16,
                  verbose=True,
                  dynamic_axes={'input1': {0: 'batch'},
                                'input2': {0: 'batch'},
                                'output1': {0: 'batch'},
                                'output2': {0: 'batch'}})

3. OpenCV DNN部署GoogLeNet

3.1 推理过程及代码实现

整个推理过程可分为前处理、推理、后处理三部分。具体细节请阅读代码,包括单图推理、动态batch推理的实现。

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <chrono>
#include <fstream>

using namespace std;
using namespace cv;
using namespace cv::dnn;

std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx";
std::string imagePath = "E:/inference-master/images/catdog";
std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";			// 标签名称列表(类名)

cv::dnn::Net net;
std::vector<std::string> classNameList;		// 标签名,可以从文件读取
int batchSize = 32;

int softmax(const cv::Mat& src, cv::Mat& dst)
{
	float max = 0.0;
	float sum = 0.0;

	max = *max_element(src.begin<float>(), src.end<float>());
	cv::exp((src - max), dst);
	sum = cv::sum(dst)[0];
	dst /= sum;

	return 0;
}

// GoogLeNet模型初始化
void ModelInit(string onnxPath)
{
	net = cv::dnn::readNetFromONNX(onnxPath);
	// net = cv::dnn::readNetFromCaffe("E:/inference-master/2/deploy.prototxt", "E:/inference-master/2/default.caffemodel");

	// 设置计算后台和计算设备
	// CPU(默认)
	// net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
	// net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
	// CUDA
	net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
	net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);

	// 读取标签名称
	ifstream fin(classNamesPath.c_str());
	string strLine;
	classNameList.clear();
	while (getline(fin, strLine))
		classNameList.push_back(strLine);
	fin.close();
}

// 单图推理
bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence)
{
	auto start = chrono::high_resolution_clock::now();

	cv::Mat image = srcImage.clone();

	// 预处理(尺寸变换、通道变换、归一化)
	cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
	cv::resize(image, image, cv::Size(224, 224));
	image.convertTo(image, CV_32FC3, 1.0 / 255.0);
	cv::Scalar mean(0.485, 0.456, 0.406);
	cv::Scalar std(0.229, 0.224, 0.225);
	cv::subtract(image, mean, image);
	cv::divide(image, std, image);

	// blobFromImage操作顺序:swapRB交换通道 -> scalefactor比例缩放 -> mean求减 -> size进行resize;
	// mean操作时,ddepth不能选取CV_8U;
	// crop=True时,先等比缩放,直到宽高之一率先达到对应的size尺寸,另一个大于或等于对应的size尺寸,然后从中心裁剪;
	// 返回4-D Mat维度顺序:NCHW
	// cv::Mat blob = cv::dnn::blobFromImage(image, 1., cv::Size(224, 224), cv::Scalar(0, 0, 0), false, false);
	cv::Mat blob = cv::dnn::blobFromImage(image);

	// 设置输入
	net.setInput(blob);

	auto end1 = std::chrono::high_resolution_clock::now();
	auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
	std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;

	// 前向推理
	cv::Mat preds = net.forward();

	auto end2 = std::chrono::high_resolution_clock::now();
	auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1);
	std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

	// 结果归一化(每个batch分别求softmax)
	softmax(preds, preds);

	Point minLoc, maxLoc;
	double minValue = 0, maxValue = 0;
	cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc);
	int labelIndex = maxLoc.x;
	double probability = maxValue;

	className = classNameList[labelIndex];
	confidence = probability;

	// std::cout << "class:" << className << endl << "confidence:" << confidence << endl;

	auto end3 = std::chrono::high_resolution_clock::now();
	auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
	std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

	auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start);
	std::cout << "opencv_dnn 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;
}

// 多图并行推理(动态batch)
bool ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences)
{
	auto start = chrono::high_resolution_clock::now();

	// 预处理(尺寸变换、通道变换、归一化)
	std::vector<cv::Mat> images;
	for (size_t i = 0; i < srcImages.size(); i++)
	{
		cv::Mat image = srcImages[i].clone();
		cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
		cv::resize(image, image, cv::Size(224, 224));
		image.convertTo(image, CV_32FC3, 1.0 / 255.0);
		cv::Scalar mean(0.485, 0.456, 0.406);
		cv::Scalar std(0.229, 0.224, 0.225);
		cv::subtract(image, mean, image);
		cv::divide(image, std, image);

		images.push_back(image);
	}

	cv::Mat blob = cv::dnn::blobFromImages(images);

	auto end1 = std::chrono::high_resolution_clock::now();
	auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
	std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;

	// 设置输入
	net.setInput(blob);

	// 前向推理
	cv::Mat	preds =  net.forward();

	auto end2 = std::chrono::high_resolution_clock::now();
	auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1) / 100.0;
	std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

	int rows = preds.size[0];	// batch
	int cols = preds.size[1];	// 类别数(每一个类别的得分)
	for (int row = 0; row < rows; row++)
	{
		cv::Mat scores(1, cols, CV_32FC1, preds.ptr<float>(row));
		softmax(scores, scores);	// 结果归一化

		Point minLoc, maxLoc;
		double minValue = 0, maxValue = 0;
		cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);
		int labelIndex = maxLoc.x;
		double probability = maxValue;

		classNames.push_back(classNameList[labelIndex]);
		confidences.push_back(probability);
	}

	auto end3 = std::chrono::high_resolution_clock::now();
	auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
	std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

	auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start);
	std::cout << "opencv_dnn batch" << rows << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;
}

int main(int argc, char** argv)
{
	// 模型初始化
	ModelInit(onnxPath);

	// 读取图像
	vector<string> filenames;
	glob(imagePath, filenames);

	// 单图推理测试
	for (int n = 0; n < filenames.size(); n++)
	{
		// 重复100次,计算平均时间
		auto start = chrono::high_resolution_clock::now();
		cv::Mat src = imread(filenames[n]);
		std::string classname;
		float confidence;
		for (int i = 0; i < 101; i++) {
			if (i==1)
				start = chrono::high_resolution_clock::now();
			ModelInference(src, classname, confidence);
		}
		auto end = chrono::high_resolution_clock::now();
		auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
		std::cout << "opencv_dnn 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
	}

	// 批量(动态batch)推理测试
	std::vector<cv::Mat> srcImages;
	for (int n = 0; n < filenames.size(); n++)
	{
		cv::Mat image = imread(filenames[n]);
		srcImages.push_back(image);
		if ((n + 1) % batchSize == 0 || n == filenames.size() - 1)
		{
			// 重复100次,计算平均时间
			auto start = chrono::high_resolution_clock::now();
			for (int i = 0; i < 101; i++) {
				if (i == 1)
					start = chrono::high_resolution_clock::now();
				std::vector<std::string> classNames;
				std::vector<float> confidences;
				ModelInference_Batch(srcImages, classNames, confidences);	
			}	
			srcImages.clear();
			auto end = chrono::high_resolution_clock::now();
			auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
			std::cout << "opencv_dnn batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;	
		}	
	}

	return 0;
}

3.2 选择CPU/GPU

OpenCV DNN切换CPU和GPU推理,只需要通过下边两行代码设置计算后台和计算设备。

CPU推理

net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);

GPU推理

net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); 

以下两点需要注意:

  • 在不做任何设置的情况下,默认使用CPU进行推理。
  • 在设置为GPU推理时,如果电脑没有搜索到CUDA环境,则会自动转换成CPU进行推理。

3.3 多输出模型推理

当模型有多个输出时,使用forward的重载方法,返回Mat类型的数组:

// 模型多输出
std::vector<cv::Mat> preds;
net.forward(preds);

cv::Mat pred1 = preds[0];
cv::Mat pred2 = preds[1];

4. ONNXRuntime部署GoogLeNet

4.1 推理过程及代码实现

代码:

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <onnxruntime_cxx_api.h>
#include <vector>
#include <fstream>
#include <chrono>

using namespace std;
using namespace cv;
using namespace Ort;

// C++表示字符串的方式:char*、string、wchar_t*、wstring、字符串数组
const wchar_t* onnxPath = L"E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx";
std::string imagePath = "E:/inference-master/images/catdog";
std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";			// 标签名称列表(类名)

std::vector<std::string> classNameList;		// 标签名,可以从文件读取
int batchSize = 1;

Ort::Env env{ nullptr };
Ort::SessionOptions* sessionOptions;

Ort::Session* session;
size_t inputCount;
size_t outputCount;
std::vector<const char*> inputNames;
std::vector<const char*> outputNames;
std::vector<int64_t> inputShape;
std::vector<int64_t> outputShape;

// 对数组元素求softmax
std::vector<float> softmax(std::vector<float> input)
{
	float total = 0;
	for (auto x : input)
		total += exp(x);
	std::vector<float> result;
	for (auto x : input)
		result.push_back(exp(x) / total);

	return result;
}

int softmax(const cv::Mat& src, cv::Mat& dst)
{
	float max = 0.0;
	float sum = 0.0;

	max = *max_element(src.begin<float>(), src.end<float>());
	cv::exp((src - max), dst);
	sum = cv::sum(dst)[0];
	dst /= sum;

	return 0;
}


// 前(预)处理(通道变换、标准化等)
void PreProcess(cv::Mat srcImage, cv::Mat& dstImage)
{
	// 通道变换,BGR->RGB
	cvtColor(srcImage, dstImage, cv::COLOR_BGR2RGB);
	resize(dstImage, dstImage, Size(224, 224));
	// 图像归一化
	dstImage.convertTo(dstImage, CV_32FC3, 1.0 / 255.0);
	cv::Scalar mean(0.485, 0.456, 0.406);
	cv::Scalar std(0.229, 0.224, 0.225);
	subtract(dstImage, mean, dstImage);
	divide(dstImage, std, dstImage);
}

// 模型初始化
int ModelInit(const wchar_t* onnxPath, bool useCuda, int deviceId)
{
	// 读取标签名称
	std::ifstream fin(classNamesPath.c_str());
	std::string strLine;
	classNameList.clear();
	while (getline(fin, strLine))
		classNameList.push_back(strLine);
	fin.close();

	// 环境设置,控制台输出设置
	env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "GoogLeNet");

	sessionOptions = new Ort::SessionOptions();
	// 设置线程数
	sessionOptions->SetIntraOpNumThreads(16);
	// 优化等级:启用所有可能的优化
	sessionOptions->SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);

	if (useCuda) {
		// 开启CUDA加速,需要cuda_provider_factory.h头文件
		OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId);
	}	

	// 创建session
	session = new Ort::Session(env, onnxPath, *sessionOptions);

	// 获取输入输出数量
	inputCount = session->GetInputCount();
	outputCount = session->GetOutputCount();
	std::cout << "Number of inputs = " << inputCount << std::endl;
	std::cout << "Number of outputs = " << outputCount << std::endl;

	// 获取输入输出名称
	Ort::AllocatorWithDefaultOptions allocator;
	const char* inputName = session->GetInputName(0, allocator);
	const char* outputName = session->GetOutputName(0, allocator);
	inputNames = { inputName };
	outputNames = { outputName };
	std::cout << "Name of inputs = " << inputName << std::endl;
	std::cout << "Name of outputs = " << outputName << std::endl;

	// 获取输入输出维度信息,返回类型std::vector<int64_t>
	inputShape = session->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
	outputShape = session->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
	std::cout << "Shape of inputs = " << "(" << inputShape[0] << "," << inputShape[1] << "," << inputShape[2] << "," << inputShape[3] << ")" << std::endl;
	std::cout << "Shape of outputs = " << "(" << outputShape[0] << "," << outputShape[1] << ")" << std::endl;

	return 0;
}

// 单图推理
void ModelInference(cv::Mat srcImage, std::string& className, float& confidence)
{
	auto start = chrono::high_resolution_clock::now();
	
	// 输入图像预处理
	cv::Mat image;
	//PreProcess(srcImage, image);  // 这里使用调用函数的方式,处理时间莫名变长很多,很奇怪

	// 通道变换,BGR->RGB
	cvtColor(srcImage, image, cv::COLOR_BGR2RGB);
	resize(image, image, Size(224, 224));
	// 图像归一化
	image.convertTo(image, CV_32FC3, 1.0 / 255.0);
	cv::Scalar mean(0.485, 0.456, 0.406);
	cv::Scalar std(0.229, 0.224, 0.225);
	subtract(image, mean, image);
	divide(image, std, image);

	cv::Mat blob = cv::dnn::blobFromImage(image);

	auto end1 = std::chrono::high_resolution_clock::now();
	auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
	std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;

	// 创建输入tensor
	auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
	std::vector<Ort::Value> inputTensors;
	inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo,
		blob.ptr<float>(), blob.total(), inputShape.data(), inputShape.size()));

	// 推理
	auto outputTensors = session->Run(Ort::RunOptions{ nullptr },
		inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount);

	auto end2 = std::chrono::high_resolution_clock::now();
	auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1);
	std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

	// 获取输出
	float* preds = outputTensors[0].GetTensorMutableData<float>();	// 也可以使用outputTensors.front();

	int64_t numClasses = outputShape[1];
	cv::Mat output = cv::Mat_<float>(1, numClasses);
	for (int j = 0; j < numClasses; j++) {
		output.at<float>(0, j) = preds[j];
	}

	Point minLoc, maxLoc;
	double minValue = 0, maxValue = 0;
	cv::minMaxLoc(output, &minValue, &maxValue, &minLoc, &maxLoc);
	int labelIndex = maxLoc.x;
	double probability = maxValue;

	className = classNameList[1];
	confidence = probability;

	auto end3 = std::chrono::high_resolution_clock::now();
	auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
	std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

	auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start);
	std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;
}

// 单图推理
void ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences)
{
	auto start = chrono::high_resolution_clock::now();

	// 输入图像预处理
	std::vector<cv::Mat> images;
	for (size_t i = 0; i < srcImages.size(); i++)
	{
		cv::Mat image = srcImages[i].clone();

		// 通道变换,BGR->RGB
		cvtColor(image, image, cv::COLOR_BGR2RGB);
		resize(image, image, Size(224, 224));
		// 图像归一化
		image.convertTo(image, CV_32FC3, 1.0 / 255.0);
		cv::Scalar mean(0.485, 0.456, 0.406);
		cv::Scalar std(0.229, 0.224, 0.225);
		subtract(image, mean, image);
		divide(image, std, image);

		images.push_back(image);
	}

	// 图像转blob格式
	cv::Mat blob = cv::dnn::blobFromImages(images);

	auto end1 = std::chrono::high_resolution_clock::now();
	auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
	std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;

	// 创建输入tensor
	std::vector<Ort::Value> inputTensors;
	auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
	inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo,
		blob.ptr<float>(), blob.total(), inputShape.data(), inputShape.size()));
	
	// 推理
	std::vector<Ort::Value> outputTensors = session->Run(Ort::RunOptions{ nullptr },
		inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount);

	auto end2 = std::chrono::high_resolution_clock::now();
	auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1)/100;
	std::cout << "inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

	// 获取输出
	float* preds = outputTensors[0].GetTensorMutableData<float>();	// 也可以使用outputTensors.front();

	// cout << preds[0] << "," << preds[1] << "," << preds[1000] << "," << preds[1001] << endl;

	int batch = outputShape[0];
	int numClasses = outputShape[1];

	cv::Mat output(batch, numClasses, CV_32FC1, preds);

	int rows = output.size[0];	// batch
	int cols = output.size[1];	// 类别数(每一个类别的得分)
	for (int row = 0; row < rows; row++)
	{
		cv::Mat scores(1, cols, CV_32FC1, output.ptr<float>(row));
		softmax(scores, scores);	// 结果归一化

		Point minLoc, maxLoc;
		double minValue = 0, maxValue = 0;
		cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);
		int labelIndex = maxLoc.x;
		double probability = maxValue;

		classNames.push_back(classNameList[labelIndex]);
		confidences.push_back(probability);
	}

	auto end3 = std::chrono::high_resolution_clock::now();
	auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
	std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

	auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start);
	std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;
}

int main(int argc, char** argv)
{
	// 模型初始化
	ModelInit(onnxPath, true, 0);

	// 读取图像
	std::vector<std::string> filenames;
	cv::glob(imagePath, filenames);

	// 单图推理测试
	for (int i = 0; i < filenames.size(); i++)
	{
		// 每张图重复运行100次,计算平均时间
		auto start = chrono::high_resolution_clock::now();
		cv::Mat srcImage = imread(filenames[i]);
		std::string className;
		float confidence;
		for (int n = 0; n < 101; n++) {
			if (n == 1)
				start = chrono::high_resolution_clock::now();
			ModelInference(srcImage, className, confidence);
		}

		// 显示
		cv::putText(srcImage, className + ":" + std::to_string(confidence),
			cv::Point(10, 20), FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 0, 255), 1, 1);

		auto end = chrono::high_resolution_clock::now();
		auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
		std::cout << "onnxruntime 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
	}

	// 批量推理测试
	std::vector<cv::Mat> srcImages;
	for (int i = 0; i < filenames.size(); i++)
	{
		cv::Mat image = imread(filenames[i]);
		srcImages.push_back(image);
		if ((i + 1) % batchSize == 0 || i == filenames.size() - 1)
		{
			// 重复100次,计算平均时间
			auto start = chrono::high_resolution_clock::now();
			for (int n = 0; n < 101; n++) {
				if (n == 1)
					start = chrono::high_resolution_clock::now();	// 首次推理耗时很久
				std::vector<std::string> classNames;
				std::vector<float> confidences;
				ModelInference_Batch(srcImages, classNames, confidences);
			}
			srcImages.clear();
			auto end = chrono::high_resolution_clock::now();
			auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
			std::cout << "onnxruntime batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
		}
	}

	return 0;
}

注意:ORT支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件是不支持推理的。

4.2 选择CPU/GPU

使用GPU推理,只需要添加一行代码:

if (useCuda) {
	// 开启CUDA加速
	OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId);
} 

4.3 多输入多输出模型推理

推理步骤和单图推理基本一致,需要在输入tensor中依次添加所有的输入。假设模型有两个输入和两个输出:

// 创建session
session2 = new Ort::Session(env1, onnxPath, sessionOptions1);

// 获取模型输入输出信息
inputCount2 = session2->GetInputCount();
outputCount2 = session2->GetOutputCount();

// 输入和输出各有两个
Ort::AllocatorWithDefaultOptions allocator;
const char* inputName1 = session2->GetInputName(0, allocator);
const char* inputName2 = session2->GetInputName(1, allocator);
const char* outputName1 = session2->GetOutputName(0, allocator);
const char* outputName2 = session2->GetOutputName(1, allocator);
intputNames2 = { inputName1, inputName2 };
outputNames2 = { outputName1, outputName2 };

// 获取输入输出维度信息,返回类型std::vector<int64_t>
inputShape2_1 = session2->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
inputShape2_2 = session2->GetInputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape();
outputShape2_1 = session2->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
outputShape2_2 = session2->GetOutputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape();

...

// 创建输入tensor
auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
std::vector<Ort::Value> inputTensors;
inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo,
	blob1.ptr<float>(), blob1.total(), inputShape2_1.data(), inputShape2_1.size()));
inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo,
	blob2.ptr<float>(), blob2.total(), inputShape2_2.data(), inputShape2_2.size()));
	
// 推理
auto outputTensors = session2->Run(Ort::RunOptions{ nullptr },
	intputNames2.data(), inputTensors.data(), inputCount2, outputNames2.data(), outputCount2);

// 获取输出
float* preds1 = outputTensors[0].GetTensorMutableData<float>();
float* preds2 = outputTensors[1].GetTensorMutableData<float>();

5. TensorRT部署GoogLeNet

TRT推理有两种常见的方式:

  1. 通过官方安装包里边的提供的trtexec.exe工具,从onnx文件转换得到trt文件,然后执行推理;
  2. 由onnx文件转化得到engine文件,再执行推理。

两种方式原理一样,这里我们只介绍第二种方式。推理过程可分为两阶段:使用onnx构建推理engine和加载engine执行推理。

5.1 构建推理引擎(engine文件) 

engine的构建是TensorRT推理至关重要的一步,它特定于所构建的确切GPU模型,不能跨平台或TensorRT版本移植。举个简单的例子,如果你在RTX3060上使用TensorRT 8.2.5构建了engine,那么推理部署也必须要在RTX3060上进行,且要具备TensorRT 8.2.5环境。engine构建的大致流程如下:

engine的构建有很多种方式,这里我们介绍常用的三种。我一般会选择直接在Python中构建,这样模型的训练、转onnx、转engine都在Python端完成,方便且省事。

方法一:在Python中构建

import os
import sys
import logging
import argparse
import tensorrt as trt

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 延迟加载模式,cuda11.7新功能,设置为LAZY有可能会极大的降低内存和显存的占用
os.environ['CUDA_MODULE_LOADING'] = 'LAZY'

logging.basicConfig(level=logging.INFO)
logging.getLogger("EngineBuilder").setLevel(logging.INFO)
log = logging.getLogger("EngineBuilder")


class EngineBuilder:
    """
    Parses an ONNX graph and builds a TensorRT engine from it.
    """

    def __init__(self, batch_size=1, verbose=False, workspace=8):
        """
        :param verbose: If enabled, a higher verbosity level will be set on the TensorRT logger.
        :param workspace: Max memory workspace to allow, in Gb.
        """
        # 1. 构建builder
        self.trt_logger = trt.Logger(trt.Logger.INFO)
        if verbose:
            self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE

        trt.init_libnvinfer_plugins(self.trt_logger, namespace="")

        self.builder = trt.Builder(self.trt_logger)
        self.config = self.builder.create_builder_config()  # 构造builder.config
        self.config.max_workspace_size = workspace * (2 ** 30)  # workspace分配

        self.batch_size = batch_size
        self.network = None
        self.parser = None

    def create_network(self, onnx_path):
        """
        Parse the ONNX graph and create the corresponding TensorRT network definition.
        :param onnx_path: The path to the ONNX graph to load.
        """
        network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

        self.network = self.builder.create_network(network_flags)
        self.parser = trt.OnnxParser(self.network, self.trt_logger)

        onnx_path = os.path.realpath(onnx_path)
        with open(onnx_path, "rb") as f:
            if not self.parser.parse(f.read()):
                log.error("Failed to load ONNX file: {}".format(onnx_path))
                for error in range(self.parser.num_errors):
                    log.error(self.parser.get_error(error))
                sys.exit(1)

        # 获取网络输入输出
        inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]
        outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)]

        log.info("Network Description")
        for input in inputs:
            self.batch_size = input.shape[0]
            log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
        for output in outputs:
            log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
        assert self.batch_size > 0
        self.builder.max_batch_size = self.batch_size

    def create_engine(self, engine_path, precision):
        """
        Build the TensorRT engine and serialize it to disk.
        :param engine_path: The path where to serialize the engine to.
        :param precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'.
        """
        engine_path = os.path.realpath(engine_path)
        engine_dir = os.path.dirname(engine_path)
        os.makedirs(engine_dir, exist_ok=True)
        log.info("Building {} Engine in {}".format(precision, engine_path))

        inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]

        if precision == "fp16":
            if not self.builder.platform_has_fast_fp16:
                log.warning("FP16 is not supported natively on this platform/device")
            else:
                self.config.set_flag(trt.BuilderFlag.FP16)

        with self.builder.build_engine(self.network, self.config) as engine, open(engine_path, "wb") as f:
            log.info("Serializing engine to file: {:}".format(engine_path))
            f.write(engine.serialize())


def main(args):
    builder = EngineBuilder(args.batch_size, args.verbose, args.workspace)
    builder.create_network(args.onnx)
    builder.create_engine(args.engine, args.precision)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-o", "--onnx", default=r'googlenet-pretrained_batch8.onnx', help="The input ONNX model file to load")
    parser.add_argument("-e", "--engine", default=r'googlenet-pretrained_batch8_from_py_3080_FP16.engine', help="The output path for the TRT engine")
    parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],
                        help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'")
    parser.add_argument("-b", "--batch_size", default=8, type=int, help="batch number of input")
    parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
    parser.add_argument("-w", "--workspace", default=8, type=int, help="The max memory workspace size to allow in Gb, "
                                                                       "default: 8")

    args = parser.parse_args()
    main(args)

生成fp16模型:参数precision设置为fp16即可。int8模型生成过程比较复杂,且对模型精度影响较大,用的不多,这里暂不介绍。

parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],
                        help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'")

方法二:在C++中构建

#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include <fstream>
#include <map>
#include <chrono>
#include <cmath>
#include <opencv2/opencv.hpp>
#include <fstream>

using namespace nvinfer1;
using namespace nvonnxparser;
using namespace std;
using namespace cv;

std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx";
std::string enginePath = "E:/inference-master/models/engine/googlenet-pretrained_batch_from_cpp.engine";  // 通过C++构建

static const int INPUT_H = 224;
static const int INPUT_W = 224;
static const int OUTPUT_SIZE = 1000;

static const int BATCH_SIZE = 25;

const char* INPUT_BLOB_NAME = "input";
const char* OUTPUT_BLOB_NAME = "output";

static Logger gLogger;

// onnx转engine
void onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) {

    // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类
    nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
    const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);

    // 创建网络定义
    nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);

    // 创建onnx解析器来填充网络
    nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger);

    // 读取onnx模型文件
    parser->parseFromFile(onnx_file_path.c_str(), 2);
    for (int i = 0; i < parser->getNbErrors(); ++i) {
        std::cout << "load error: " << parser->getError(i)->desc() << std::endl;
    }
    printf("tensorRT load mask onnx model successfully!!!...\n");

    // 创建生成器配置对象
    nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();
   
    builder->setMaxBatchSize(BATCH_SIZE);           // 设置最大batch 
    config->setMaxWorkspaceSize(16 * (1 << 20));    // 设置最大工作空间大小

    // 设置模型输出精度,0代表FP32,1代表FP16
    if (type == 1) {
        config->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
// 创建推理引擎 nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); // 将推理引擎保存到本地 std::cout << "try to save engine file now~~~" << std::endl; std::ofstream file_ptr(engine_file_path, std::ios::binary); if (!file_ptr) { std::cerr << "could not open plan output file" << std::endl; return; } // 将模型转化为文件流数据 nvinfer1::IHostMemory* model_stream = engine->serialize(); // 将文件保存到本地 file_ptr.write(reinterpret_cast<const char*>(model_stream->data()), model_stream->size()); // 销毁创建的对象 model_stream->destroy(); engine->destroy(); network->destroy(); parser->destroy(); std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl; } int main(int argc, char** argv) { // onnx转engine onnx_to_engine(onnxPath, enginePath, 0); return 0; } 

方法三:使用官方安装包bin目录下的trtexec.exe工具构建

trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224

fp16模型:在后边加--fp16即可

trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224 --fp16 

5.2 读取engine文件并部署模型

推理代码:

#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include <fstream>
#include <map>
#include <chrono>
#include <cmath>
#include <opencv2/opencv.hpp>

#include "cuda.h"
#include "assert.h"
#include "iostream"

using namespace nvinfer1;
using namespace nvonnxparser;
using namespace std;
using namespace cv;

#define CHECK(status) \
    do\
    {\
        auto ret = (status);\
        if (ret != 0)\
        {\
            std::cerr << "Cuda failure: " << ret << std::endl;\
            abort();\
        }\
    } while (0)

std::string enginePath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1_from_py_3080_FP32.engine";
std::string imagePath = "E:/inference-master/images/catdog";
std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";			// 标签名称列表(类名)

std::vector<std::string> classNameList;		// 标签名列表

static const int INPUT_H = 224;
static const int INPUT_W = 224;
static const int CHANNEL = 3;
static const int OUTPUT_SIZE = 1000;

static const int BATCH_SIZE = 1;

const char* INPUT_BLOB_NAME = "input";
const char* OUTPUT_BLOB_NAME = "output";

static Logger gLogger;

IRuntime* runtime;
ICudaEngine* engine;
IExecutionContext* context;
void* gpu_buffers[2];
cudaStream_t stream;
const int inputIndex = 0;
const int outputIndex = 1;

// 提前申请内存,可节省推理时间
static float mydata[BATCH_SIZE * CHANNEL * INPUT_H * INPUT_W];
static float prob[BATCH_SIZE * OUTPUT_SIZE];

// 逐行求softmax
int softmax(const cv::Mat & src, cv::Mat & dst)
{
    float max = 0.0;
    float sum = 0.0;

    cv::Mat tmpdst = cv::Mat::zeros(src.size(), src.type());

    std::vector<cv::Mat> srcRows;
    // 逐行求softmax
    for (size_t i = 0; i < src.rows; i++)
    {
        cv::Mat tmpRow;
        cv::Mat dataRow = src.row(i).clone();
        max = *std::max_element(dataRow.begin<float>(), dataRow.end<float>());
        cv::exp((dataRow - max), tmpRow);
        sum = cv::sum(tmpRow)[0];
        tmpRow /= sum;

        srcRows.push_back(tmpRow);
        cv::vconcat(srcRows, tmpdst);
    }

    dst = tmpdst.clone();
    return 0;
}

// onnx转engine
void onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) {

    // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类
    nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
    const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);

    // 创建网络定义
    nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);

    // 创建onnx解析器来填充网络
    nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger);

    // 读取onnx模型文件
    parser->parseFromFile(onnx_file_path.c_str(), 2);
    for (int i = 0; i < parser->getNbErrors(); ++i) {
        std::cout << "load error: " << parser->getError(i)->desc() << std::endl;
    }
    printf("tensorRT load mask onnx model successfully!!!...\n");

    // 创建生成器配置对象
    nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();
   
    builder->setMaxBatchSize(BATCH_SIZE);           // 设置最大batch 
    config->setMaxWorkspaceSize(16 * (1 << 20));    // 设置最大工作空间大小

    // 设置模型输出精度
    if (type == 1) {
        config->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
    if (type == 2) {
        config->setFlag(nvinfer1::BuilderFlag::kINT8);
    }
    // 创建推理引擎
    nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);

    // 将推理引擎保存到本地
    std::cout << "try to save engine file now~~~" << std::endl;
    std::ofstream file_ptr(engine_file_path, std::ios::binary);
    if (!file_ptr) {
        std::cerr << "could not open plan output file" << std::endl;
        return;
    }
    // 将模型转化为文件流数据
    nvinfer1::IHostMemory* model_stream = engine->serialize();
    // 将文件保存到本地
    file_ptr.write(reinterpret_cast<const char*>(model_stream->data()), model_stream->size());
    // 销毁创建的对象
    model_stream->destroy();
    engine->destroy();
    network->destroy();
    parser->destroy();
    std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl;
}

// 模型推理:包括创建GPU显存缓冲区、配置模型输入及模型推理
void doInference(IExecutionContext& context, const void* input, float* output, int batchSize)
{
    //auto start = chrono::high_resolution_clock::now();

    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CHECK(cudaMemcpyAsync(gpu_buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));

    // context.enqueue(batchSize, buffers, stream, nullptr);
    context.enqueueV2(gpu_buffers, stream, nullptr);

    //auto end1 = std::chrono::high_resolution_clock::now();
    //auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
    //std::cout << "推理: " << (ms1 / 1000.0).count() << "ms" << std::endl;

    CHECK(cudaMemcpyAsync(output, gpu_buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
    //size_t dest_pitch = 0;
    //CHECK(cudaMemcpy2D(output, dest_pitch, buffers[outputIndex], batchSize * sizeof(float), batchSize, OUTPUT_SIZE, cudaMemcpyDeviceToHost));
    cudaStreamSynchronize(stream);

    
    //auto end2 = std::chrono::high_resolution_clock::now();
    //auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - start)/100.0;
    //std::cout << "cuda-host: " << (ms2 / 1000.0).count() << "ms" << std::endl;

}

// 结束推理,释放资源
void GpuMemoryRelease()
{
    // Release stream and buffers
    cudaStreamDestroy(stream);
    CHECK(cudaFree(gpu_buffers[0]));
    CHECK(cudaFree(gpu_buffers[1]));

    // Destroy the engine
    context->destroy();
    engine->destroy();
    runtime->destroy();
}

// GoogLeNet模型初始化
void ModelInit(std::string enginePath, int deviceId)
{
    // 设置GPU
    cudaSetDevice(deviceId);

    // 从本地读取engine模型文件
    char* trtModelStream{ nullptr };
    size_t size{ 0 };
    std::ifstream file(enginePath, std::ios::binary);
    if (file.good()) {
        file.seekg(0, file.end);    // 将读指针从文件末尾开始移动0个字节
        size = file.tellg();    // 返回读指针的位置,此时读指针的位置就是文件的字节数
        file.seekg(0, file.beg);    // 将读指针从文件开头开始移动0个字节
        trtModelStream = new char[size];
        assert(trtModelStream);
        file.read(trtModelStream, size);
        file.close();
    }

    // 创建推理运行环境实例
    runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    // 反序列化模型
    engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
    assert(engine != nullptr);
    // 创建推理上下文
    context = engine->createExecutionContext();
    assert(context != nullptr);
    delete[] trtModelStream;

    // Create stream
    CHECK(cudaStreamCreate(&stream));

    // Pointers to input and output device buffers to pass to engine.
    // Engine requires exactly IEngine::getNbBindings() number of buffers.
    assert(engine.getNbBindings() == 2);

    // In order to bind the buffers, we need to know the names of the input and output tensors.
    // Note that indices are guaranteed to be less than IEngine::getNbBindings()
    const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
    const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);

    // Create GPU buffers on device
    CHECK(cudaMalloc(&gpu_buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float)));
    CHECK(cudaMalloc(&gpu_buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float)));

    // 读取标签名称
    ifstream fin(classNamesPath.c_str());
    string strLine;
    classNameList.clear();
    while (getline(fin, strLine))
        classNameList.push_back(strLine);
    fin.close();
}

// 单图推理
bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence)
{
    auto start = chrono::high_resolution_clock::now();

    cv::Mat image = srcImage.clone();

    // 预处理(尺寸变换、通道变换、归一化)
    cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
    cv::resize(image, image, cv::Size(224, 224));
    image.convertTo(image, CV_32FC3, 1.0 / 255.0);
    cv::Scalar mean(0.485, 0.456, 0.406);
    cv::Scalar std(0.229, 0.224, 0.225);
    cv::subtract(image, mean, image);
    cv::divide(image, std, image);

    // cv::Mat blob = cv::dnn::blobFromImage(image);

    // 下边代码比上边blobFromImages速度更快
    for (int r = 0; r < INPUT_H; r++)
    {
        float* rowData = image.ptr<float>(r);
        for (int c = 0; c < INPUT_W; c++)
        {
            mydata[0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c];
            mydata[1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1];
            mydata[2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2];
        }
    }

    // 模型推理
    // doInference(*context, blob.data, prob, BATCH_SIZE);
    doInference(*context, mydata, prob, BATCH_SIZE);

    // 推理结果后处理
    cv::Mat preds = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob);
 
    softmax(preds, preds);

    Point minLoc, maxLoc;
    double minValue = 0, maxValue = 0;
    cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc);
    int labelIndex = maxLoc.x;
    double probability = maxValue;

    className = classNameList[labelIndex];
    confidence = probability;

    std::cout << "class:" << className << endl << "confidence:" << confidence << endl;
    auto end = chrono::high_resolution_clock::now();
    auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start);
    std::cout << "Inference time by TensorRT:" << (ms / 1000.0).count() << "ms" << std::endl;
   
    return 0;
}

// GoogLeNet模型推理
bool ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<std::string>& classNames, std::vector<float>& confidences)
{
    auto start = std::chrono::high_resolution_clock::now();

    if (srcImages.size() != BATCH_SIZE) return false;

    // 预处理(尺寸变换、通道变换、归一化)
    std::vector<cv::Mat> images;
    for (size_t i = 0; i < srcImages.size(); i++)
    {
        cv::Mat image = srcImages[i].clone();
        cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
        cv::resize(image, image, cv::Size(224, 224));
        image.convertTo(image, CV_32FC3, 1.0 / 255.0);
        cv::Scalar mean(0.485, 0.456, 0.406);
        cv::Scalar std(0.229, 0.224, 0.225);
        cv::subtract(image, mean, image);
        cv::divide(image, std, image);

        images.push_back(image);
    }

    // 图像转blob格式
    // cv::Mat blob = cv::dnn::blobFromImages(images);

    // 下边代码比上边blobFromImages速度更快
    for (int b = 0; b < BATCH_SIZE; b++)
    { 
        cv::Mat image = images[b];
        for (int r = 0; r < INPUT_H; r++)
        {
            float* rowData = image.ptr<float>(r);
            for (int c = 0; c < INPUT_W; c++)
            {
                mydata[b * CHANNEL * INPUT_H * INPUT_W + 0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c];
                mydata[b * CHANNEL * INPUT_H * INPUT_W + 1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1];
                mydata[b * CHANNEL * INPUT_H * INPUT_W + 2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2];
            }   
        }
    }
     
    auto end1 = std::chrono::high_resolution_clock::now();
    auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
    std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;

    // 执行推理
    doInference(*context, mydata, prob, BATCH_SIZE);

    auto end2 = std::chrono::high_resolution_clock::now();
    auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1);
    std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

    // 推理结果后处理
    cv::Mat result = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob);
    softmax(result, result);

    for (int r = 0; r < BATCH_SIZE; r++)
    {
        cv::Mat scores = result.row(r).clone();

        cv::Point minLoc, maxLoc;
        double minValue = 0, maxValue = 0;
        cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);
        int labelIndex = maxLoc.x;
        double probability = maxValue;

        classNames.push_back(classNameList[labelIndex]);
        confidences.push_back(probability);
    }

    auto end3 = std::chrono::high_resolution_clock::now();
    auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
    std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

    auto ms = std::chrono::duration_cast<std::chrono::microseconds>(end3 - start);
    std::cout << "TensorRT batch" << BATCH_SIZE << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;

    return true;
}

int main(int argc, char** argv)
{
    // onnx转engine
    // onnx_to_engine(onnxPath, enginePath, 0);

    // 模型初始化
    ModelInit(enginePath, 0);

    // 读取图像
    vector<string> filenames;
    cv::glob(imagePath, filenames);

    // 单图推理测试
    for (int n = 0; n < filenames.size(); n++)
    {
        // 重复100次,计算平均时间
        auto start = chrono::high_resolution_clock::now();
        cv::Mat src = imread(filenames[n]);
        std::string className;
        float confidence;
        for (int i = 0; i < 101; i++) {
            if (i == 1)
                start = chrono::high_resolution_clock::now();
            ModelInference(src, className, confidence);
        }
        auto end = chrono::high_resolution_clock::now();
        auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
        std::cout << "TensorRT 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
    }

    // 批量(动态batch)推理测试
    std::vector<cv::Mat> srcImages;
    int okNum = 0, ngNum = 0;
    for (int n = 0; n < filenames.size(); n++)
    {
        cv::Mat image = imread(filenames[n]);
        srcImages.push_back(image);
        if ((n + 1) % BATCH_SIZE == 0 || n == filenames.size() - 1)
        {
            // 重复100次,计算平均时间
            auto start = chrono::high_resolution_clock::now();
            for (int i = 0; i < 101; i++) {
                if (i == 1)
                    start = chrono::high_resolution_clock::now();
                std::vector<std::string> classNames;
                std::vector<float> confidences;
                ModelInference_Batch(srcImages, classNames, confidences);

                for (int j = 0; j < classNames.size(); j++)
                {
                    if (classNames[j] == "0")
                        okNum++;
                    else
                        ngNum++;
                }

            }
            srcImages.clear();
            auto end = chrono::high_resolution_clock::now();
            auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
            std::cout << "TensorRT " << BATCH_SIZE << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
        }        
    }

    GpuMemoryRelease();

    std::cout << "all_num = " << filenames.size() << endl << "okNum = " << okNum << endl << "ngNum = " << ngNum << endl;

    return 0;
} 

5.3 fp32、fp16模型对比测试

fp16模型推理结果几乎和fp32一致,但是却较大的节约了显存和内存占用,同时推理速度也有明显的提升。

6. OpenVINO部署GoogLeNet

6.1 推理过程及代码

代码:

/* 推理过程
* 1. Create OpenVINO-Runtime Core
* 2. Compile Model
* 3. Create Inference Request
* 4. Set Inputs
* 5. Start Inference
* 6. Process inference Results
*/

#include <opencv2/opencv.hpp>
#include <openvino/openvino.hpp>
#include <inference_engine.hpp>
#include <chrono>
#include <fstream>

using namespace std;
using namespace InferenceEngine;
using namespace cv;

std::string onnxPath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx";
std::string imagePath = "E:/inference-master/images/catdog";
std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";			// 标签名称列表(类名)

ov::InferRequest inferRequest;
std::vector<std::string> classNameList;		// 标签名,可以从文件读取
int batchSize = 1;

// softmax,输入输出为数组
std::vector<float> softmax(std::vector<float> input)
{
	float total = 0;
	for (auto x : input)
		total += exp(x);
	std::vector<float> result;
	for (auto x : input)
		result.push_back(exp(x) / total);

	return result;
}

// softmax,输入输出为Mat
int softmax(const cv::Mat& src, cv::Mat& dst)
{
	float max = 0.0;
	float sum = 0.0;

	max = *max_element(src.begin<float>(), src.end<float>());
	cv::exp((src - max), dst);
	sum = cv::sum(dst)[0];
	dst /= sum;

	return 0;
}

// 模型初始化
void ModelInit(string onnxPath)
{
	// Step 1: 创建一个Core对象
	ov::Core core;

	// 打印当前设备
	std::vector<std::string> availableDevices = core.get_available_devices();
	for (int i = 0; i < availableDevices.size(); i++)
		printf("supported device name: %s\n", availableDevices[i].c_str());

	// Step 2: 读取模型
	std::shared_ptr<ov::Model> model = core.read_model(onnxPath);

	// Step 3: 加载模型到CPU
	ov::CompiledModel compiled_model = core.compile_model(model, "CPU");

	// 设置推理实例并发数为5个
	//core.set_property("CPU", ov::streams::num(10));
	// 设置推理实例数为自动分配
	//core.set_property("CPU", ov::streams::num(ov::streams::AUTO));
	// 推理实例数按计算资源平均分配
	//core.set_property("CPU", ov::streams::num(ov::streams::NUMA));

	// 设置推理实例的线程并发数为10
	// core.set_property("CPU", ov::inference_num_threads(20));

	// Step 4: 创建推理请求
	inferRequest = compiled_model.create_infer_request();

	// 读取标签名称
	ifstream fin(classNamesPath.c_str());
	string strLine;
	classNameList.clear();
	while (getline(fin, strLine))
		classNameList.push_back(strLine);
	fin.close();
}

// 单图推理
void ModelInference(cv::Mat srcImage, std::string& className, float& confidence )
{
	auto start = chrono::high_resolution_clock::now();

	// Step 5: 将输入数据填充到输入tensor
	// 通过索引获取输入tensor
	ov::Tensor input_tensor = inferRequest.get_input_tensor(0);
	// 通过名称获取输入tensor
	// ov::Tensor input_tensor = infer_request.get_tensor("input");

	// 预处理
	cv::Mat image = srcImage.clone();
	cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
	resize(image, image, Size(224, 224));
	image.convertTo(image, CV_32FC3, 1.0 / 255.0);
	Scalar mean(0.485, 0.456, 0.406);
	Scalar std(0.229, 0.224, 0.225);
	subtract(image, mean, image);
	divide(image, std, image);

	// HWC -> NCHW
	ov::Shape tensor_shape = input_tensor.get_shape();
	const size_t channels = tensor_shape[1];
	const size_t height = tensor_shape[2];
	const size_t width = tensor_shape[3];
	float* image_data = input_tensor.data<float>();
	for (size_t r = 0; r < height; r++) {
		for (size_t c = 0; c < width * channels; c++) {
			int w = (r * width * channels + c) / channels;
			int mod = (r * width * channels + c) % channels;  // 0,1,2
			image_data[mod * width * height + w] = image.at<float>(r, c);
		}
	}

	// --------------- Step 6: Start inference ---------------
	inferRequest.infer();

	// --------------- Step 7: Process the inference results ---------------
	// model has only one output
	auto output_tensor = inferRequest.get_output_tensor();
	float* detection = (float*)output_tensor.data();
	ov::Shape out_shape = output_tensor.get_shape();
	int batch = output_tensor.get_shape()[0];
	int num_classes = output_tensor.get_shape()[1];

	cv::Mat result(batch, num_classes, CV_32F, detection);

	softmax(result, result);

	Point minLoc, maxLoc;
	double minValue = 0, maxValue = 0;
	cv::minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc);
	int labelIndex = maxLoc.x;
	double probability = maxValue;

	auto end = chrono::high_resolution_clock::now();
	auto ms = chrono::duration_cast<std::chrono::milliseconds>(end - start);
	std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl;
}

// 多图并行推理(动态batch)
void ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences)
{
	auto start = chrono::high_resolution_clock::now();

	// Step 5: 将输入数据填充到输入tensor
	// 通过索引获取输入tensor
	ov::Tensor input_tensor = inferRequest.get_input_tensor(0);
	// 通过名称获取输入tensor
	// ov::Tensor input_tensor = infer_request.get_tensor("input");

	// 预处理(尺寸变换、通道变换、归一化)
	std::vector<cv::Mat> images;
	for (size_t i = 0; i < srcImages.size(); i++)
	{
		cv::Mat image = srcImages[i].clone();
		cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
		cv::resize(image, image, cv::Size(224, 224));
		image.convertTo(image, CV_32FC3, 1.0 / 255.0);
		cv::Scalar mean(0.485, 0.456, 0.406);
		cv::Scalar std(0.229, 0.224, 0.225);
		cv::subtract(image, mean, image);
		cv::divide(image, std, image);

		images.push_back(image);
	}

	ov::Shape tensor_shape = input_tensor.get_shape();
	const size_t batch = tensor_shape[0];
	const size_t channels = tensor_shape[1];
	const size_t height = tensor_shape[2];
	const size_t width = tensor_shape[3];
	float* image_data = input_tensor.data<float>();

	// 图像转blob格式(速度比下边像素操作方式更快)
	cv::Mat blob = cv::dnn::blobFromImages(images);
	memcpy(image_data, blob.data, batch * 3 * height * width * sizeof(float));

	// NHWC -> NCHW
	//for (size_t b = 0; b < batch; b++){
	//	for (size_t r = 0; r < height; r++) {
	//		for (size_t c = 0; c < width * channels; c++) {
	//			int w = (r * width * channels + c) / channels;
	//			int mod = (r * width * channels + c) % channels;  // 0,1,2
	//			image_data[b * 3 * width * height + mod * width * height + w] = images[b].at<float>(r, c);
	//		}
	//	}
	//}

	auto end1 = std::chrono::high_resolution_clock::now();
	auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start);
	std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;
	
	// --------------- Step 6: Start inference ---------------
	inferRequest.infer();

	auto end2 = std::chrono::high_resolution_clock::now();
	auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1)/100;
	std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;

	// --------------- Step 7: Process the inference results ---------------
	// model has only one output
	auto output_tensor = inferRequest.get_output_tensor();
	float* detection = (float*)output_tensor.data();
	ov::Shape out_shape = output_tensor.get_shape();
	int num_classes = output_tensor.get_shape()[1];

	cv::Mat output(batch, num_classes, CV_32F, detection);

	int rows = output.size[0];	// batch
	int cols = output.size[1];	// 类别数(每一个类别的得分)
	for (int row = 0; row < rows; row++)
	{
		cv::Mat scores(1, cols, CV_32FC1, output.ptr<float>(row));
		softmax(scores, scores);	// 结果归一化

		Point minLoc, maxLoc;
		double minValue = 0, maxValue = 0;
		cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);
		int labelIndex = maxLoc.x;
		double probability = maxValue;

		classNames.push_back(classNameList[labelIndex]);
		confidences.push_back(probability);
	}

	auto end3 = std::chrono::high_resolution_clock::now();
	auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2);
	std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;

	auto ms = chrono::duration_cast<std::chrono::milliseconds>(end3 - start);
	std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl;
}

int main(int argc, char** argv)
{
	// 模型初始化
	ModelInit(onnxPath);

	// 读取图像
	vector<string> filenames;
	glob(imagePath, filenames);

	// 单图推理测试
	for (int n = 0; n < filenames.size(); n++)
	{
		// 重复100次,计算平均时间
		auto start = chrono::high_resolution_clock::now();
		for (int i = 0; i < 101; i++) {
			if (i == 1)
				start = chrono::high_resolution_clock::now();
			cv::Mat src = imread(filenames[n]);
			std::string className;
			float confidence;
			ModelInference(src, className, confidence);
		}
		auto end = chrono::high_resolution_clock::now();
		auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100.0;
		std::cout << "opencv_dnn 单图平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
	}

	std::vector<cv::Mat> srcImages;
	for (int i = 0; i < filenames.size(); i++)
	{
		cv::Mat image = imread(filenames[i]);
		srcImages.push_back(image);
		if ((i + 1) % batchSize == 0 || i == filenames.size() - 1)
		{
			// 重复100次,计算平均时间
			auto start = chrono::high_resolution_clock::now();
			for (int i = 0; i < 101; i++) {
				if (i == 1)
					start = chrono::high_resolution_clock::now();
				std::vector<std::string> classNames;
				std::vector<float> confidences;
				ModelInference_Batch(srcImages, classNames, confidences);
			}
			srcImages.clear();
			auto end = chrono::high_resolution_clock::now();
			auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100;
			std::cout << "openvino batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;
		}
	}
	return 0;
}

注意:OV支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件会报错。

6.2 遇到的问题

理论:OpenVINO是基于CPU推理最佳的方式。

实测:在测试OpenVINO的过程中,我们发现OpenVINO推理对于CPU的利用率远没有OpenCV DNN和ONNXRuntime高,这也是随着batch数量增加,OV在CPU上的推理速度反而不如DNN和ORT的主要原因。尝试过网上的多种优化方式,比如设置线程数并发数等等,未取得任何改善。如下图,在OpenVINO推理过程中,始终只有一半的CPU处于活跃状态;而OnnxRuntime或者OpenCV DNN推理时,所有的CPU均处于活跃状态。

7. 四种推理方式对比测试

深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。

以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:

基于CPU推理:

基于GPU推理:

不论采用何种推理方式,同一网络的前处理和后处理过程基本都是一致的。所以,为了更直观的对比几种推理方式的速度,我们抛去前后处理,只统计图中实际推理部分,即3、4、5这三个过程的执行时间。

同样是GoogLeNet网络,步骤3-5的执行时间对比如下:

注:OpenVINO-CPU测试中始终只使用了一半数量的内核,各种优化设置都没有改善。

最终结论:

  1. GPU加速首选TensorRT;
  2. CPU加速,单图推理首选OpenVINO,多图并行推理可选择ONNXRuntime;
  3. 如果需要兼具CPU和GPU推理功能,可选择ONNXRuntime。

参考资料

1. openvino2022版安装配置与C++SDK开发详解

2. https://github.com/NVIDIA/TensorRT

3. https://github.com/wang-xinyu/tensorrtx

4. 【TensorRT】TensorRT 部署Yolov5模型(C++)

标签:std,OpenVINO,部署,auto,模型,cv,int,onnx,image
From: https://www.cnblogs.com/shaoxx333/p/16630781.html

相关文章

  • 【Linux学习笔记】设备驱动模型详解——总线、设备、驱动和类
    简介设备驱动是计算机系统中的重要组成部分,它们允许操作系统与硬件交互。设备驱动模型是一种通用的抽象框架,用于描述操作系统如何管理硬件设备。这里我们将介绍设备驱动模型中的四个关键概念:总线、设备、驱动和类。总线在计算机系统中,总线是指多个设备之间传输数据的路径。总线......
  • 自动化工具ansible的部署和使用
    (文章目录)前言Ansible是一种自动化工具,可用于部署、配置和管理计算机系统。它是基于Python的开源软件,具有易于使用、可靠、灵活和可扩展等特点,被广泛应用于IT管理领域。Ansible提供了一个简单而强大的语言,用于描述系统如何配置和管理,称为“Playbook”。它使用SSH协议作为通信......
  • 大模型改变世界:重构企业、再造应用、激发产业新格局
    作者|曾响铃文|响铃说大模型正在中国遍地开花,做过的没做过的都要过来参合一下。汹涌浪潮中,不免有更多人开始关注那个最先发布的文心一言。全球科技大厂中第一个发布GPT大模型产品的百度,在刚刚的中关村论坛上透露了一些文心一言发展的近况:“QPS每秒查询推理响应速度,提升10倍,推......
  • 【K8s入门推荐】K8s1.24版本部署全教程,轻松掌握技巧kubeadm丨Kubernetes丨容器编排丨
    通过kubeadm方式极速部署Kubernetes1.24版本前言在Kubernetes的搭建过程中,繁琐的手动操作和复杂的配置往往会成为制约部署效率的关键因素。而使用kubeadm工具可以避免这些问题,大大提高集群的部署效率和部署质量。本文将为大家详细介绍如何使用kubeadm工具快速搭建Kubernetes1.24......
  • 五、JUC-Java内存模型JMM
    一、一些疑问什么是Java内存模型JMMJMM与volatile他们两个之间的关系JMM有哪些特性为什么要有JMM,他们为什么出现,功能和作用是什么happens-before先行发生原则是什么二、计算机硬件存储体系计算机存储结构,从本地磁盘到主存到CPU缓存,也就是从硬盘到内存到CPU一般对应的程序......
  • 基于RBAC模型的权限管理设计
    [toc]目的管理系统用户的功能菜单权限,物理资源(文件、数据)权限。RBAC模型简介RBAC模型(Role-BasedAccessControl:基于角色的访问控制)是比较早期提出的权限实现模型,在多用户计算机时期该思想即被提出,其中以美国GeorgeMason大学信息安全技术实验室(LIST)提出的RBAC96模型最具有代表,并得......
  • docker 快速部署 Jenkins
    version:'3'services:jenkins:image:jenkins/jenkinscontainer_name:myjenkinsrestart:alwayshostname:myjenkins_hostports:-18181:8080#界面端口-18182:50000#apivolumes:-./jenkins_mount:/var......
  • 简单、快速|DeployKit 云部署套件
    本文作者:杨苏博解读ServerlessServerless是一种云计算模型,它使开发人员能够构建和运行应用程序而无需为服务器基础架构或运行时环境管理任何资源。相反,开发人员只需编写应用程序代码,将其上传到云提供商的服务中,然后该服务会负责根据请求的需要自动扩展或缩小应用程序。在......
  • docker部署gitlab私有仓库
    官方文档https://docs.gitlab.com/ee/install/docker.html编写docker-compose文件version:'3.6'services:web:image:'gitlab/gitlab-ee:latest'restart:alwayshostname:'192.168.31.160'ports:-'5111:80&......
  • 深度学习进阶篇-预训练模型[3]:XLNet、BERT、GPT,ELMO的区别优缺点,模型框架、一些Trick
    深度学习进阶篇-预训练模型[3]:XLNet、BERT、GPT,ELMO的区别优缺点,模型框架、一些Trick、TransformerEncoder等原理详细讲解1.XLNet:GeneralizedAutoregressivePretrainingforLanguageUnderstanding1.1.从AR和AE模型到XLNet模型自回归模型(AutoregressiveModel,AR),通过估计......