首页 > 编程语言 >Java中快如闪电的线程间通讯

Java中快如闪电的线程间通讯

时间:2023-05-05 23:04:14浏览次数:53  
标签:列车 Java ops 生产者 队列 sec 快如闪电 线程


这个故事源自一个很简单的想法:创建一个对开发人员友好的、简单轻量的线程间通讯框架,完全不用锁、同步器、信号量、等待和通知,在Java里开发一个轻量、无锁的线程内通讯框架;并且也没有队列、消息、事件或任何其他并发专用的术语或工具。

只用普通的老式Java接口实现POJO的通讯。

它可能跟Akka的类型化actor类似,但作为一个必须超级轻量,并且要针对单台多核计算机进行优化的新框架,那个可能有点过了。

当actor跨越不同JVM实例(在同一台机器上,或分布在网络上的不同机器上)的进程边界时,Akka框架很善于处理进程间的通讯。

但对于那种只需要线程间通讯的小型项目而言,用Akka类型化actor可能有点儿像用牛刀杀鸡,不过类型化actor仍然是一种理想的实现方式。

我花了几天时间,用动态代理,阻塞队列和缓存线程池创建了一个解决方案。

图一是这个框架的高层次架构:


图一框架的高层次架构

SPSC队列是指单一生产者/单一消费者队列。MPSC队列是指多生产者/单一消费者队列。

派发线程负责接收Actor线程发送的消息,并把它们派发到对应的SPSC队列中去。

接收到消息的Actor线程用其中的数据调用相应的actor实例中的方法。借助其他actor的代理,actor实例可以将消息发送到MPSC队列中,然后消息会被发送给目标actor线程。

我创建了一个简单的例子来测试,就是下面这个打乒乓球的程序:


public interface PlayerA (  void pong(long ball); //发完就忘的方法调用 
}
public interface PlayerB {   
  void ping(PlayerA playerA, long ball); //发完就忘的方法调用 
}    
public class PlayerAImpl implements PlayerA {    
  @Override    
  public void pong(long ball) {    
  }    
}
public class PlayerBImpl implements PlayerB {   
  @Override    
  public void ping(PlayerA playerA, long ball) {    
    playerA.pong(ball);    
  }    
}
public class PingPongExample {   
  public void testPingPong() {
    // 管理器隐藏了线程间通讯的复杂性
    // 控制actor代理,actor实现和线程  
    ActorManager manager = new ActorManager();
    // 在管理器内注册actor实现 
    manager.registerImpl(PlayerAImpl.class);    
    manager.registerImpl(PlayerBImpl.class);
    //创建actor代理。代理会将方法调用转换成内部消息。 
    //会在线程间发给特定的actor实例。    
    PlayerA playerA = manager.createActor(PlayerA.class);    
    PlayerB playerB = manager.createActor(PlayerB.class);    
    for(int i = 0; i < 1000000; i++) {    
       playerB.ping(playerA, i);     
   }    
}


经过测试,速度大约在每秒500,000 次乒/乓左右;还不错吧。然而跟单线程的运行速度比起来,我突然就感觉没那么好了。在 单线程中运行的代码每秒速度能达到20亿 (2,681,850,373)!

居然差了5,000 多倍。太让我失望了。在大多数情况下,单线程代码的效果都比多线程代码更高效。

我开始找原因,想看看我的乒乓球运动员们为什么这么慢。经过一番调研和测试,我发现是阻塞队列的问题,我用来在actor间传递消息的队列影响了性能。

 2: 只有一个生产者和一个消费者的SPSC队列

所以我发起了一场竞赛,要将它换成Java里最快的队列。我发现了Nitsan Wakart的 博客 。他发了几篇文章介绍单一生产者/单一消费者(SPSC)无锁队列的实现。这些文章受到了Martin Thompson的演讲 终极性能的无锁算法的启发。

跟基于私有锁的队列相比,无锁队列的性能更优。在基于锁的队列中,当一个线程得到锁时,其它线程就要等着锁被释放。而在无锁的算法中,某个生产者线程生产消息时不会阻塞其它生产者线程,消费者也不会被其它读取队列的消费者阻塞。

在Martin Thompson的演讲以及在Nitsan的博客中介绍的SPSC队列的性能简直令人难以置信—— 超过了100M ops/sec。比JDK的并发队列实现还要快10倍 (在4核的 Intel Core i7 上的性能大约在 8M ops/sec 左右)。

我怀着极大的期望,将所有actor上连接的链式阻塞队列都换成了无锁的SPSC队列。可惜,在吞吐量上的性能测试并没有像我预期的那样出现大幅提升。不过很快我就意识到,瓶颈并不在SPSC队列上,而是在多个生产者/单一消费者(MPSC)那里。

用SPSC队列做MPSC队列的任务并不那么简单;在做put操作时,多个生产者可能会覆盖掉彼此的值。SPSC 队列就没有控制多个生产者put操作的代码。所以即便换成最快的SPSC队列,也解决不了我的问题。

为了处理多个生产者/单一消费者的情况,我决定启用LMAX Disruptor ——一个基于环形缓冲区的高性能进程间消息库。

3: 单一生产者和单一消费者的LMAX Disruptor

借助Disruptor,很容易实现低延迟、高吞吐量的线程间消息通讯。它还为生产者和消费者的不同组合提供了不同的用例。几个线程可以互不阻塞地读取环形缓冲中的消息:

 4: 单一生产者和两个消费者的LMAX Disruptor    

下面是有多个生产者写入环形缓冲区,多个消费者从中读取消息的场景。

 5: 两个生产者和两个消费者的LMAX Disruptor

经过对性能测试的快速搜索,我找到了 三个发布者和一个消费者的吞吐量测试。 这个真是正合我意,它给出了下面这个结果:

 

LinkedBlockingQueue

Disruptor

Run 0

4,550,625 ops/sec

11,487,650 ops/sec

Run 1

4,651,162 ops/sec

11,049,723 ops/sec

Run 2

4,404,316 ops/sec

11,142,061 ops/sec

在3 个生产者/1个 消费者场景下, Disruptor要比LinkedBlockingQueue快两倍多。然而这跟我所期望的性能上提升10倍仍有很大差距。

这让我觉得很沮丧,并且我的大脑一直在搜寻解决方案。就像命中注定一样,我最近不在跟人拼车上下班,而是改乘地铁了。突然灵光一闪,我的大脑开始将车站跟生产者消费者对应起来。在一个车站里,既有生产者(车和下车的人),也有消费者(同一辆车和上车的人)。

我创建了 Railway类,并用AtomicLong追踪从一站到下一站的列车。我先从简单的场景开始,只有一辆车的铁轨。


public class RailWay {   private final Train train = new Train();  
 // stationNo追踪列车并定义哪个车站接收到了列车
 private final AtomicInteger stationIndex = new AtomicInteger();
// 会有多个线程访问这个方法,并等待特定车站上的列车 
public Train waitTrainOnStation(final int stationNo) {

   while (stationIndex.get() % stationCount != stationNo) {
    Thread.yield(); // 为保证高吞吐量的消息传递,这个是必须的。
                   //但在等待列车时它会消耗CPU周期 
   }  
   // 只有站号等于stationIndex.get() % stationCount时,这个忙循环才会返回

   return train;
 }
// 这个方法通过增加列车的站点索引将这辆列车移到下一站
  public void sendTrain() {
    stationIndex.getAndIncrement();
   }
  }

为了测试,我用的条件跟在Disruptor性能测试中用的一样,并且也是测的SPSC队列——测试在线程间传递long值。我创建了下面这个Train类,其中包含了一个long数组:


public class Train {     //   
  public static int CAPACITY = 2*1024;
  private final long[] goodsArray; // 传输运输货物的数组

  private int index;

  public Train() {   
      goodsArray = new long[CAPACITY];     
 }

 public int goodsCount() { //返回货物数量    
  return index;    
 }    
 public void addGoods(long i) { // 向列车中添加条目    
  goodsArray[index++] = i;    
 }    
 public long getGoods(int i) { //从列车中移走条目    
  index--;    
  return goodsArray[i];    
 }    
}

然后我写了一个简单的测试 :两个线程通过列车互相传递long值。

 6: 使用单辆列车的单一生产者和单一消费者Railway


public void testRailWay() {     final Railway railway = new Railway();    
  final long n = 20000000000l;    
  //启动一个消费者进程 
  new Thread() {    
   long lastValue = 0;
   @Override   
   public void run() {    
    while (lastValue < n) {    
      Train train = railway.waitTrainOnStation(1); //在#1站等列车
      int count = train.goodsCount();    
      for (int i = 0; i < count; i++) {    
        lastValue = train.getGoods(i); // 卸货   
      }    
      railway.sendTrain(); //将当前列车送到第一站 
     }    
   }    
 }.start();

final long start = System.nanoTime();
long i = 0;   
while (i < n) {    
 Train train = railway.waitTrainOnStation(0); // 在#0站等列车    
 int capacity = train.getCapacity();    
 for (int j = 0; j < capacity; j++) {    
   train.addGoods((int)i++); // 将货物装到列车上 
 }    
 railway.sendTrain();
 if (i % 100000000 == 0) { //每隔100M个条目测量一次性能 
    final long duration = System.nanoTime() - start;    
    final long ops = (i * 1000L * 1000L * 1000L) / duration;    
    System.out.format("ops/sec = %,d\n", ops);    
    System.out.format("trains/sec = %,d\n", ops / Train.CAPACITY);    
    System.out.format("latency nanos = %.3f%n\n", 
    duration / (float)(i) * (float)Train.CAPACITY);    
  }    
 }    
}


在不同的列车容量下运行这个测试,结果惊着我了:

容量

吞吐量: ops/sec

延迟: ns

1

5,190,883

192.6

2

10,282,820

194.5

32

104,878,614

305.1

256

344,614,640

742. 9

2048

608,112,493

3,367.8

32768

767,028,751

42,720.7

在列车容量达到32,768时,两个线程传送消息的吞吐量达到了767,028,751 ops/sec。比Nitsan博客中的SPSC队列快了几倍。

继续按铁路列车这个思路思考,我想知道如果有两辆列车会怎么样?我觉得应该能提高吞吐量,同时还能降低延迟。每个车站都会有它自己的列车。当一辆列车在第一个车站装货时,第二辆列车会在第二个车站卸货,反之亦然。

 7: 使用两辆列车的单一生产者和单一消费者Railway

下面是吞吐量的结果:

容量

吞吐量: ops/sec

延时: ns

1

7,492,684

133.5

2

14,754,786

135.5

32

174,227,656

183.7

256

613,555,475

417.2

2048

940,144,900

2,178.4

32768

797,806,764

41,072.6

结果是惊人的;比单辆列车的结果快了1.4倍多。列车容量为一时,延迟从192.6纳秒降低到133.5纳秒;这显然是一个令人鼓舞的迹象。

因此我的实验还没结束。列车容量为2048的两个线程传递消息的延迟为2,178.4 纳秒,这太高了。我在想如何降低它,创建一个有很多辆列车 的例子:

 8: 使用多辆列车的单一生产者和单一消费者Railway 

我还把列车容量降到了1个long值,开始玩起了列车数量。下面是测试结果:

列车数量

吞吐量: ops/sec

延迟: ns

2

10,917,951

91.6

32

31,233,310

32.0

256

42,791,962

23.4

1024

53,220,057

18.8

32768

71,812,166

13.9

用32,768 列车在线程间发送一个long值的延迟降低到了13.9 纳秒。通过调整列车数量和列车容量,当延时不那么高,吞吐量不那么低时,吞吐量和延时就达到了最佳平衡。

对于单一生产者和单一消费者(SPSC)而言,这些数值很棒;但我们怎么让它在有多个生产者和消费者时也能生效呢?答案很简单,添加更多的车站!

 9:一个生产者和两个消费者的Railway

每个线程都等着下一趟列车,装货/卸货,然后把列车送到下一站。在生产者往列车上装货时,消费者在从列车上卸货。列车周而复始地从一个车站转到另一个车站。

为了测试单一生产者/多消费者(SPMC) 的情况,我创建了一个有8个车站的Railway测试。 一个车站属于一个生产者,而另外7个车站属于消费者。结果是:

列车数量 = 256 ,列车容量 = 32:


ops/sec = 116,604,397     延迟(纳秒) = 274.4


列车数量= 32,列车容量= 256:


ops/sec = 432,055,469     延迟(纳秒) = 592.5


如你所见,即便有8个工作线程,测试给出的结果也相当好– 32辆容量为256个long的列车吞吐量为432,055,469 ops/sec。在测试期间,所有CPU内核的负载都是100%。

 10:在测试有8个车站的Railway 期间的CPU 使用情况

在玩这个Railway算法时,我几乎忘了我最初的目标:提升多生产者/单消费者情况下的性能。

 11:三个生产者和一个消费者的 Railway 

我创建了3个生产者和1个消费者的新测试。每辆列车一站一站地转圈,而每个生产者只给每辆车装1/3容量的货。消费者取出每辆车上三个生产者给出的全部三项货物。性能测试给出的平均结果如下所示:


ops/sec = 162,597,109  列车/秒 = 54,199,036     延迟(纳秒) = 18.5


结果相当棒。生产者和消费者工作的速度超过了160M ops/sec。

为了填补差异,下面给出相同情况下的Disruptor结果- 3个生产者和1个消费者:


Run 0, Disruptor=11,467,889 ops/secRun 1, Disruptor=11,280,315 ops/sec
Run 2, Disruptor=11,286,681 ops/sec
Run 3, Disruptor=11,254,924 ops/sec

下面是另一个批量消息的Disruptor 3P:1C 测试 (10 条消息每批):


Run 0, Disruptor=116,009,280 ops/secRun 1, Disruptor=128,205,128 ops/sec
Run 2, Disruptor=101,317,122 ops/sec
Run 3, Disruptor=98,716,683 ops/sec;


最后是用带LinkedBlockingQueue 实现的Disruptor 在3P:1C场景下的测试结果:


Run 0, BlockingQueue=4,546,281 ops/secRun 1, BlockingQueue=4,508,769 ops/sec
Run 2, BlockingQueue=4,101,386 ops/sec
Run 3, BlockingQueue=4,124,561 ops/sec

如你所见,Railway方式的平均吞吐量是162,597,109 ops/sec,而Disruptor在同样的情况下的最好结果只有128,205,128 ops/sec。至于 LinkedBlockingQueue,最好的结果只有4,546,281 ops/sec。

Railway算法为事件批处理提供了一种可以显著增加吞吐量的简易办法。通过调整列车容量或列车数量,很容易达成想要的吞吐量/延迟。

另外, 当同一个线程可以用来消费消息,处理它们并向环中返回结果时,通过混合生产者和消费者,Railway也能用来处理复杂的情况:

 12: 混合生产者和消费者的Railway

最后,我会提供一个经过优化的超高吞吐量 单生产者/单消费者测试:

 13:单个生产者和单个消费者的Railway

它的平均结果为:吞吐量超过每秒15亿 (1,569,884,271)次操作,延迟为1.3 微秒。如你所见,本文开头描述的那个规模相同的单线程测试的结果是每秒2,681,850,373。

你自己想想结论是什么吧。

我希望将来再写一篇文章,阐明如何用Queue和 BlockingQueue接口支持Railway算法,用来处理不同的生产者和消费者组合。敬请关注。

标签:列车,Java,ops,生产者,队列,sec,快如闪电,线程
From: https://blog.51cto.com/iwtxokhtd/6248006

相关文章

  • 5个强大的Java分布式缓存框架推荐
    本文主要是分享了5个常用的Java分布式缓存框架,这些缓存框架支持多台服务器的缓存读写功能,可以让你的缓存系统更容易扩展。1、EhcacheEhcache是一个Java实现的开源分布式缓存框架,EhCache可以有效地减轻数据库的负载,可以让数据保存在不同服务器的内存中,在需要数据的时候可以快速存取......
  • 电子邮件系统 2----JavaMail 搜索指定邮件示例
    1./**2.*CrazyItTest3.*使用JavaMail搜索并删除指定邮件示例4.*/5.package6.import7.import8.import9.import10.import11.import12.import13.import14.import15.import16.import17.import18.import19.import20./**21.*@authorBi......
  • javaweb性能优化-----总结
    高吞吐量关键指标:1、并发访问量2、在线数量3、数量查询所占比重此三点的直接体现:1、数据状态保存2、登陆状态信息保存3、频繁的数据连接和存储查询策略优化:1、减少一次数据读取的条目可以较大改善和减轻服务器对CPU和内存的压力2、减少一次数据读取的条目可以检查网络传输的压力,减......
  • Java Web性能优化-----1
    JavaWeb性能优化你时常被客户抱怨JSP页面响应速度很慢吗?你想过当客户访问次数剧增时,你的WEB应用能承受日益增加的访问量吗?呵呵下面讲述了调整JSP和servlet的一些非常实用的方法,它可使你的servlet和JSP页面响应更快,扩展性更强。而且在用户数增加的情况下,系统负载会呈现出平滑上长的......
  • JAVA8新特性
    JAVA8新特性Lambda表达式只有函数式接口才能使用Lambda表达式​ Lambda表达式是JDK8中的一个语法糖,它可以对某些匿名内部类的写法进行简化,它是函数式编程思想的一个重要体现,让我们不用关注是什么对象,而是更关注我们对数据进行了什么操作。核心原则​ 可推导可省略基本格......
  • 24基于java的宠物医院管理系统
    项目背景随着互联网的普及,已经和我们的生活不可分割;宠物渐渐的已经成为了我们的好朋友,宠物医院管理系统可以帮助用户合理的管理宠物,呵护宠物的健康,对宠物起到了一个健康监控的作用;项目介绍系统总体分为3个角色:分别是系统管理员;医生和用户;不能的角色拥有不同的功能权限,下面详......
  • JAVA中的两个容器StringBuilder和StringJoiner概述
    JAVA中的两个容器StringBuilder和StringJoiner概述StringBuilder可以看成一个容器,创建之后里面的内容是可以修改的方法名说明publicStringBuilderappend(任意类型)添加数据,并返回对象本身publicStringBuilderreverse()反转容器中的内容publicintlength()返......
  • Java并发(四)----线程运行原理
    1、线程运行原理1.1栈与栈帧  JavaVirtualMachineStacks(Java虚拟机栈JVM)我们都知道JVM中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟机就会为其分配一块栈内存。每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存......
  • C++中的多线程编程和同步机制
    C++中的多线程编程和同步机制使得程序员可以利用计算机的多核心来提高程序的运行效率和性能。本文将介绍多线程编程和同步机制的基本概念和使用方法。多线程编程基础在C++中,使用<thread>库来创建和管理线程。线程可以通过函数、成员函数或者Lambda表达式来实现。以下是一个使......
  • 连接池/线程池
    线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。如果某个线程在托管代码中空闲(如正在等待某个事件),则线程池将插入另一个辅助线程来使所有......