首页 > 编程语言 >python数据处理小工具

python数据处理小工具

时间:2022-09-22 10:02:45浏览次数:64  
标签:python print split file 数据处理 工具 csv data row

python处理数据常用方法,包括:

1)按照指定行数 split_size,分割超大csv文件

2)读取csv文件数据,并发送http-json请求,订正生产或者测试环境数据

3)csv文件按照某一列分割成多个csv文件

4) 连接指定数据库,实施查询、更新、或者导出csv操作

##常用处理csv文件数据的python脚本方法

###### 1)按照指定行数 split_size,分割超大csv文件
import pandas as pd
from pathlib import Path

def split_big_csv_file():
    res_file_path = Path("C:\\Users\\admin\\Desktop\\prod\\test-net.csv")                 #待分割文件路径
    split_size = 2000000              #子文件行数最大值
    tar_dir = res_file_path.parent/("split_"+res_file_path.name.split(".")[0])
    if not tar_dir.exists():
        tar_dir.mkdir()
        print("创建文件夹\t"+str(tar_dir))
    print("目标路径:\t"+str(tar_dir))
    print("分割文件:\t"+str(res_file_path))
    print("分割大小:\t"+"{:,}".format(split_size))
    tmp = pd.read_csv(res_file_path,nrows = 10)
    columns = tmp.columns.to_list()
    idx = 0
    while(len(tmp)>0):
        start = 1+(idx*split_size)
        tmp = pd.read_csv(res_file_path,
                          header = None,
                          names = columns,
                          skiprows = start,
                          nrows = split_size)
        if len(tmp) <= 0:
            break
        file_name = res_file_path.name.split(".")[0]+"_{}_{}".format(start,start+len(tmp))+".csv"
        file_path = tar_dir/file_name
        tmp.to_csv(file_path,index=False)
        idx+=1
        print(file_name +"\t保存成功")



###### 2)读取csv文件数据,并发送http-json请求,订正生产或者测试环境数据
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import requests
import json
import sys
from concurrent.futures import ThreadPoolExecutor
from threading import BoundedSemaphore

url = "http://xxxx/v1/modify"
headers = {"Content-Type": "application/json",
           "Accept": "application/json",
           "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
                         "Chrome/65.0.3325.181 Safari/537.36"}

count = 0
request_header = headers
start_time = datetime.now()
total_line = 0
haveActivedCount = 0

def read_from_extract_file():
    global start_time
    stop_line = 0
    #根据列名读取csv文件
    df = pd.read_csv("C:\\Users\\admin\\Desktop\\prod\\test-net.csv",keep_default_na=False,
                     dtype={'device_sn':np.str_,'device_id':np.str_,'device_mac':np.str_,'device_vendor':np.str_,'device_model':np.str_},
                     encoding='utf-8')
    print(df.shape)
    print(df.size)
    #线程池方式
    # executor = BoundedExecutor(10, 3000)
    for index, row in df.iterrows():
        if index + 1 > stop_line:
            print(row)
            # response = executor.submit(post_data_request, row)
            response = post_data_request(row)


def post_data_request(row):
    global total_line
    global count
    global haveActivedCount
    #请求json格式
    data = {
        "deviceId": row['device_id'],
        "sn": row['device_sn'],
        "deviceVendorId": row['device_vendor'],
        "deviceModelId": row['device_model'],
        "deviceType": 'xxxxx',
        "mac": row['device_mac'],
        "activeTime":row['create_date']
    }

    print("开始更新数据", data)
    global request_header
    try:
        response = requests.post(url, headers=request_header, json=data)
        #业务状态码判断
        if response.status_code == 200:
            if json.loads(json.dumps(response.json())).get('code') == 200:
                count = count + 1
                print("成功更新: ",count)
            elif json.loads(json.dumps(response.json())).get('code') == 4100000:
                # print(response.json())
                haveActivedCount = haveActivedCount + 1
                print("已经激活: ", haveActivedCount)
        else:
            print("共更新总数##### : ", count)
            print("其中已激活总数##### : ", haveActivedCount)
            print(response)
            sys.exit()
    except requests.exceptions:
        print("请求发送异常,当前更新的行数",count + haveActivedCount)
        sys.exit()



class BoundedExecutor:
    """BoundedExecutor behaves as a ThreadPoolExecutor which will block on
    calls to submit() once the limit given as "bound" work items are queued for
    execution.
    :param bound: Integer - the maximum number of items in the work queue
    :param max_workers: Integer - the size of the thread pool
    """

    def __init__(self, max_workers, bound):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.semaphore = BoundedSemaphore(bound + max_workers)

    """See concurrent.futures.Executor#submit"""

    def submit(self, fn, *args, **kwargs):
        self.semaphore.acquire()
        try:
            future = self.executor.submit(fn, *args, **kwargs)
        except:
            self.semaphore.release()
            raise
        else:
            future.add_done_callback(lambda x: self.semaphore.release())
            return future

    """See concurrent.futures.Executor#shutdown"""

    def shutdown(self, wait=True):
        self.executor.shutdown(wait)



###### 3)csv文件按照某一列分割成多个csv文件
import pandas as pd
def split_csv_file_with_assign_column():
    x_head_key = ['partner_name', 'prod_model', 'prod_id', 'sn', 'mac', 'active_time']
    csv_file = 'C:/Users/admin/Desktop/prod-20220830/test001.csv'
    df = pd.read_csv(csv_file, header=0,encoding="utf-8")
    df.columns = x_head_key
    # 去掉重复数据
    # ind_frame = df.drop_duplicates(keep='first')
    # 对数据进行分组处理
    grouped = df.groupby(x_head_key[0])  # 按照partner_name分组
    #分割后文件存放目录
    file = './'
    # file = 'C:\\Users\\admin\\Desktop\\prod-20220830\\python\\'
    allCount=0;
    for value, group in grouped:
        filename = file + str(value) + '.csv'
        try:
            f = open(filename, 'w')
            if f:
                # 清空文件内容
                f.truncate()

            # 将新数据写入文件
            allCount=allCount+group.value_counts().size;
            print(filename+',数量='+str(group.value_counts().size))
            group.to_csv(filename, header=x_head_key, index=False, mode='ab+')
        except UnicodeEncodeError:
            print("编码错误, 该数据无法写到文件中, 直接忽略该数据");
    print('总记录数:'+str(allCount));



###### 4) 连接指定数据库,实施查询、更新、或者导出csv操作

#coding:utf-8
import pymysql
import csv


# 读取csv文件中的数据作为sql查询参数,发起查询,导出所需数据
def get_csv_data_by_params():
    # print(os.getcwd())  打印当前路径
    filenameParam = 'C:/Users/admin/Desktop/prod-20220830/test002_params.csv'  # sql查询参数--文件名和路径
    for line in open(filenameParam, encoding='utf-8'):
        print(line),
        arr = line.replace("\n","").split(',')
        select_data_and_write_csv(arr[0],arr[1],arr[2])


# 将数据保存为csv文件
def select_data_and_write_csv(user_id,start_time,end_time):
    data = mysql_db_sz_stock(user_id,start_time,end_time)
    # print(len(data))
    # print(data)
    # print(os.getcwd())  打印当前路径
    filename = 'C:/Users/admin/Desktop/prod-20220830/getdata/Export_'+user_id+'.csv'  # 文件名和路径
    with open(filename, mode='a',newline="", encoding='utf-8') as f:
        write = csv.writer(f, dialect='excel')
        write.writerow(['id', 'user_id', 'center_ability_code', 'center_ability_name', 'create_time'])  # 先写下标题
        for item in data:
            write.writerow(item)

def mysql_db_sz_stock(user_id,startTime,endTime):
    # # 连接数据库
    connect = pymysql.connect(host="127.0.0.1",   # 本地数据库
                              port=3306,
                              user="user",
                              password="password",
                              db="db_name",
                              charset="utf8")  # 服务器名,账户,密码,数据库名称

    ##采用配置方式
    # 连接数据库
    # connect = pymysql.connect(host=MYSQL_HOST,   # 本地数据库
    #                           port=MYSQL_PORT,
    #                           user=MYSQL_USER,
    #                           password=MYSQL_PWD,
    #                           db=MYSQL_DB,
    #                           charset='utf8')  # 服务器名,账户,密码,数据库名称

    cursor = connect.cursor()
    sql = "SELECT id,user_id,create_time FROM `table123`  where create_time >=%(startTime)s and create_time <%(endTime)s and user_id =%(user_id)s"
    #sql参数
    values = {"user_id": user_id, "startTime": startTime, "endTime": endTime}
    cursor.execute(sql, values)
    data = cursor.fetchall()
    connect.commit()  # 提交到数据库执行
    print("查询参数:user_id="+user_id+",startTime="+startTime+",endTime="+endTime)
    print("查询结果size="+str(len(data)))
    # print(data)

    #  ---------------------关闭数据库
    cursor.close()  # 关闭游标
    connect.close()  # 关闭数据库连接
    return data


if __name__ == '__main__':
    # split_big_csv_file();
    # read_from_extract_file();
    # split_csv_file_with_assign_column();
    get_csv_data_by_params();

 

标签:python,print,split,file,数据处理,工具,csv,data,row
From: https://www.cnblogs.com/wuyun-blog/p/16718140.html

相关文章

  • python18篇 环境迁移
    在原来环境中使用pipfreeze>文件名称,这样会生成一个文件,一般命名为requirements.txt在新的环境中使用pipinstall-r文件名(第一步生成的文件),即可下载安装,这样就不会......
  • Redis与Python连接实例
    2022-09-221、Redis与Python建立连接之前需要先安装“Redis”安装包:在ubantu中,打开终端,输入命令:sudopipinstallredis此时,是安装Python2.0的版本。一般来说,是将3......
  • python requests模块获取与使用cookie
    一.处理cookie方法一:用requests.utils.dict_from_cookiejar()把返回的cookies转换成字典importrequestsdeflogin():url='http://www.xxx.com/login'......
  • nxopen ug8.5 vb.net 定位块底面打孔工具
    OptionStrictOffImportsSystemImportsNXOpenImportsNXOpen.BlockStylerImportsNXOpen.UFImportsSystem.Collections.Generic'----------------------------......
  • Python 第3章 实战
    一、实验目的和要求掌握控制流语句二、实验过程  采用Python三、实验过程  根据《零基础学Python》(全彩版)的课程实例代码四、代码及其结果  1.代码......
  • Python 第3章 实例部分
    一、实验目的和要求  掌握控制流常用语句的用法,并写出控制流语句的应用实例。二、实验过程  采用Python。三、实验过程  根据《零基础学Python》(全彩版)的......
  • Python cv2(Opencv) 图像基本操作
    OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效,由一系列C函数和少......
  • Python实验报告
                                                         ......
  • python-mysql 批量造数据
    importpymysqldb=pymysql.connect(host="124.70.xxx.xxx",user="root",password="3xxxx",database="novel")mycursor=db.cursor()phone=......
  • Python实验报告第三章——实例&实战
                                   python第三章——流程控制语句实验报告 一、实验目的和要求1、了解程......