首页 > 编程语言 >OpenCV [c++](图像处理基础示例小程序汇总)

OpenCV [c++](图像处理基础示例小程序汇总)

时间:2023-04-06 12:34:46浏览次数:54  
标签:Mat img 示例 int c++ OpenCV Scalar contours 255

一、图像读取与显示

#include<opencv2/opencv.hpp>
#include<iostream>
 
using namespace cv;
using namespace std;
 
int main()
{
	string path = "Resources/lambo.png";//图片的路径名
	Mat img = imread(path);//将图片加载后赋值到图像变量img中
    //if (path.empty()) { cout << "file not loaded" << endl; }
    //检查文件是否打开 没打开时执行打印语句
    //namedWindow("Image", WINDOW_FREERATIO);//创建一个名为Image的可调节的窗口
	imshow("Image", img);//创建一个窗口来显示图像img
	waitKey(0);//不断刷新图像
	return 0;
}
  • waitKey()函数的功能是不断刷新图像,频率为delay,单位是ms。
  • delay为0时,则会一直显示这一帧。
  • delay不为0时,则在显示完一帧图像后程序等待“delay"ms再显示下一帧图像。

二、图像预处理[高斯滤波、canny边缘检测、膨胀腐蚀]

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
void main() {
 
	string path = "Resources/test.png";
	Mat img = imread(path);
	Mat imgGray,imgBlur,imgCanny,imgDil,imgErode;
	//将照片转换为灰度
	cvtColor(img, imgGray, COLOR_BGR2GRAY);
	//高斯模糊
	GaussianBlur(imgGray, imgBlur, Size(3, 3), 3, 0);
	//Canny边缘检测器  一般在使用Canny边缘检测器之前会做一些模糊处理
	Canny(imgBlur, imgCanny, 25, 75);
	//创建一个可以使用膨胀的内核
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
	//图像膨胀
	dilate(imgCanny, imgDil, kernel);
	//图像侵蚀
	erode(imgDil, imgErode, kernel);
    //结果呈现
	imshow("Image", img);
	imshow("Image Gray", imgGray);
	imshow("Image Blur", imgBlur);
	imshow("Image Canny", imgCanny);
	imshow("Image Dilation", imgDil);
	imshow("Image Erode", imgErode);
 
	waitKey(0);
}

OpenCV [c++](图像处理基础示例小程序汇总)_Image

Canny边缘检测

Canny(imgBlur, imgCanny, 25, 75);

第3和第4个参数分别代表底阈值和高阈值,其中底阈值常取高阈值的1/2或1/3

OpenCV [c++](图像处理基础示例小程序汇总)_Image_02

三、图像裁剪

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
void main() {
 
	string path = "Resources/test.png";
	Mat img = imread(path);
	Mat imgResize,imgCrop;
	//调整图像大小
	//cout << img.size() << endl;//查看原图像的大小
	//resize(img, imgResize, Size(640, 480));//按自定义的宽度与高度缩放
	resize(img, imgResize, Size(),0.5,0.5);//按比例缩放
	//图像裁剪
	Rect roi(200, 100, 300, 300);
    //前面两个参数为距左上原点的x方向与y方向的距离,后两个参数为延伸的x,y长度
	imgCrop = img(roi);
 
	imshow("Image", img);
	imshow("Image Resize", imgResize);
	imshow("Image Crop", imgCrop);
	waitKey(0);
 
}

void cv::resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR)

调整图像的大小。函数 resize 将图像 src 的大小缩小到或最大到指定的大小。请注意,不考虑初始 dst 类型或大小。相反,大小和类型是从 src、dsize、fx 和 fy 派生的。

OpenCV [c++](图像处理基础示例小程序汇总)_Image_03

四、绘制形状和添加文本

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
int main()
{
	//Blank Image
	Mat img(512, 512, CV_8UC3, Scalar(255, 255, 255));
 
	circle(img, Point(256, 256), 155, Scalar(0, 69, 255), FILLED);
	rectangle(img, Point(130, 226), Point(382, 286), Scalar(255, 255, 255), -1);
	line(img, Point(130, 296), Point(382, 296), Scalar(255, 255, 255), 2);
 
	putText(img, "Murtaza's Workshop", Point(137, 262), FONT_HERSHEY_DUPLEX, 0.95, Scalar(0, 69, 255), 2);
 
	imshow("Image", img);
	waitKey(0);
 
	return 0;
}


Mat(int rows, int cols, int type, const Scalar &s)
重载的构造函数

void cv::circle(InputOutputArray img, Point center, int radius, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
函数 cv::circle 用给定的中心和半径绘制一个简单的或实心圆。

void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
void cv::rectangle(Mat &img, Rect rec, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
绘制一个简单的、粗的或填充的右上矩形。函数 cv::rectangle 绘制一个矩形轮廓或两个对角为 pt1 和 pt2 的填充矩形。

void cv::line (InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
绘制连接两点的线段。函数line绘制图像中 pt1 和 pt2 点之间的线段。

void cv::putText (InputOutputArray img, const String &text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false)
绘制一个文本字符串。函数 cv::putText 在图像中呈现指定的文本字符串。无法使用指定字体呈现的符号将替换为问号。

OpenCV [c++](图像处理基础示例小程序汇总)_图像处理_04

五、透视投影变换矫正

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
float w = 250, h = 350;
Mat matrix, imgWarp;
// 透视变换
void main() {
 
	string path = "card.jpg";
	Mat img = imread(path);
 
	Point2f src[4] = { {529,142},{771,190},{405,395},{674,457} };
	Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };
 
	matrix = getPerspectiveTransform(src, dst);//获取透视变换矩阵
    //src为源图像四边形顶点坐标,dst为目标图像对应的四边形顶点坐标
	warpPerspective(img, imgWarp, matrix, Point(w, h));
    //参数分别为 输入图像,输出图像,透视变换矩阵,图像大小
 
	for (int i = 0; i < 4; i++)
	{
		circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);
	}//在原图像中标记目标顶点
 
	imshow("Image", img);
	imshow("Image Warp", imgWarp);
 
	waitKey(0);
}

OpenCV [c++](图像处理基础示例小程序汇总)_图像处理_05

六、颜色检测

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
Mat imgHSV,mask;
int hmin = 0, smin = 0, vmin = 0;
int hmax =179, smax = 255, vmax = 255;
 
void main() {
 
	string path = "temp.png";
	Mat img = imread(path);
	cvtColor(img, imgHSV, COLOR_BGR2HSV);
    //HSV颜色空间  H(色调):0~180  S(饱和度):0~255  V(亮度):0~255
 
	namedWindow("Trackbars", (640, 200));//创建一个名为Trackbars的窗口,大小为640*200
	createTrackbar("Hue Min", "Trackbars", &hmin, 179);
	createTrackbar("Hue Max", "Trackbars", &hmax, 179);
	createTrackbar("Sat Min", "Trackbars", &smin, 255);
	createTrackbar("Sat Max", "Trackbars", &smax, 255);
	createTrackbar("Val Min", "Trackbars", &vmin, 255);
	createTrackbar("Val Max", "Trackbars", &vmax, 255);
    //createTrackbar函数是创建轨迹条,
    //4个参数分别是 轨迹条名字,输出的窗口,一个指向整数的指针来表示当前的值,可到达的最大值
 
	while (true)
	{
		//检测我们所要的颜色 设置一个遮罩 在范围内的颜色
		Scalar lower(hmin, smin, vmin);//HSV范围最低值
		Scalar upper(hmax, smax, vmax);//HSV范围最高值
		inRange(imgHSV, lower, upper, mask);//输入,低值,高值,输出
//inRange是将在阈值区间内的像素值设置为白色(255),而不在阈值区间内的像素值设置为黑色(0)
 
		imshow("Image", img);
		imshow("Image HSV", imgHSV);
		imshow("Image Mask", mask);
 
		waitKey(1);
	}
}

OpenCV [c++](图像处理基础示例小程序汇总)_Image_06

七、形状检测和轮廓检测[findContours(),approxPolyDP()]

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
Mat imgGray, imgBlur, imgCanny, imgDil, imgErode;
//定义一个轮廓处理函数
void getContours(Mat imgDil,Mat img) {
 
	vector<vector<Point>> contours;//{ {Point(20,30),Point(50,60)},{}, {}}
	vector<Vec4i>hierarchy;//vector里放置了四个int类型的变量
	findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	//drawContours(img, contours, -1, Scalar(255, 0, 255), 2);
	vector<vector<Point>>conPoly(contours.size());
	vector<Rect> boundRect(contours.size());
	
	for (int i = 0; i < contours.size(); i++)
	{
		int area = contourArea(contours[i]);
		cout << area << endl;//需要正确过滤的面积(过滤噪点)
 
		string objectType;
        //判断形状
		if (area>1000)
		{
			float peri = arcLength(contours[i], true);
			approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true);//找到近似值
			
			cout << conPoly[i].size() << endl;
			boundRect[i] = boundingRect(conPoly[i]);//边界矩形
			
			int objCor = (int)conPoly[i].size();
 
			if (objCor == 3) { objectType = "Tri"; }
			if (objCor == 4) { 
				
				float aspRatio = (float)boundRect[i].width / (float)boundRect[i].height;
				cout << aspRatio << endl;
				if (aspRatio > 0.95 && aspRatio < 1.05) { objectType = "Square"; }
				else { objectType = "Rect"; 
				}
			}
			if (objCor > 4) { objectType = "Circle"; }
 
			drawContours(img, conPoly, i, Scalar(255, 0, 255), 2);//描绘计数轮廓
			rectangle(img, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 5);//绘制边界矩形
			//打印图形的名字
			putText(img, objectType, { boundRect[i].x,boundRect[i].y - 5 }, FONT_HERSHEY_PLAIN, 1, Scalar(0, 69, 255), 2);
		}
	}
}
 
void main() {
 
	string path = "temp.png";
	Mat img = imread(path);
 
//图像的预处理
	//1.将照片转换为灰度
	cvtColor(img, imgGray, COLOR_BGR2GRAY);
	//2.高斯模糊
	GaussianBlur(imgGray, imgBlur, Size(3, 3), 3, 0);
	//3.Canny边缘检测器
	Canny(imgBlur, imgCanny, 25, 75);
	//4.创建一个可以使用膨胀的内核
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
	//5.图像膨胀
	dilate(imgCanny, imgDil, kernel);
 
	getContours(imgDil,img);
 
	imshow("Image", img);
 
	waitKey(0);
}

八、人脸识别

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
void main() {
 
	string path = "test.png";
	Mat img = imread(path);
 
	CascadeClassifier faceCascade;//创建级联分类器
    //载入训练模型
	faceCascade.load("Resources/haarcascade_frontalface_default.xml");
 
	if(faceCascade.empty()){cout<<"XML file not loaded"<<endl; }
    //检查文件是否打开 没打开时执行打印语句
 
	vector<Rect>faces;//创建人脸存放的vector
	faceCascade.detectMultiScale(img, faces, 1.1, 10);
//detectMultiScale函数可以检测出图片中所有的人脸,并用vector保存各个人脸的坐标、大小
 
    //在原图像中画出人脸矩形边框
	for (int i = 0; i < faces.size(); i++)
	{
		rectangle(img, faces[i].tl(),faces[i].br(), Scalar(255, 0, 255), 3);
	}
 
	imshow("Image", img);
 
	waitKey(0);
}
class cv::CascadeClassifier
用于对象检测的级联分类器类。

bool load (const String &filename)
从文件加载分类器。

bool empty() const
检查分类器是否已加载。

void detectMultiScale(InputArray image, std::vector<Rect> &objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())
检测输入图像中不同大小的对象。检测到的对象作为矩形列表返回。

OpenCV [c++](图像处理基础示例小程序汇总)_Image_07

九、虚拟画笔作画

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
 
int main()
{
	VideoCapture cap(1);
	Mat img;
	Mat imgHSV, mask, imgColor;
	int hmin = 0, smin = 0, vmin = 0;
	int hmax = 179, smax = 255, vmax = 255;
 
	namedWindow("Trackbars", (640, 200)); // Create Window
	createTrackbar("Hue Min", "Trackbars", &hmin, 179);
	createTrackbar("Hue Max", "Trackbars", &hmax, 179);
	createTrackbar("Sat Min", "Trackbars", &smin, 255);
	createTrackbar("Sat Max", "Trackbars", &smax, 255);
	createTrackbar("Val Min", "Trackbars", &vmin, 255);
	createTrackbar("Val Max", "Trackbars", &vmax, 255);
 
	while (true) {
 
		cap.read(img);
		cvtColor(img, imgHSV, COLOR_BGR2HSV);
 
		Scalar lower(hmin, smin, vmin);
		Scalar upper(hmax, smax, vmax);
 
		inRange(imgHSV, lower, upper, mask);
		// hmin, smin, vmin, hmax, smax, vmax;
		cout << hmin << ", " << smin << ", " << vmin << ", " << hmax << ", " << smax << ", " << vmax << endl;
		imshow("Image", img);
		imshow("Mask", mask);
		waitKey(1);
	}
}
#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
Mat img;
vector<vector<int>> newPoints;
 
vector<vector<int>> myColors{ {124, 48, 117, 143, 170, 255}, //purple
								{68, 72, 156, 102, 126, 255} }; //green
 
vector<Scalar> myColorValues{ {255, 0, 255}, //purple
								{0, 255, 0} }; //green
 
Point getContours(Mat imgDil) {
 
	vector<vector<Point>> contours; //轮廓数据
	vector<Vec4i> hierarchy;
 
	findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //通过预处理的二值图像找到所有轮廓contours
	//drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声)
	vector<vector<Point>> conPoly(contours.size());
	vector<Rect> boundRect(contours.size());
	Point myPoint(0, 0);
 
	for (int i = 0; i < contours.size(); i++)
	{
		double area = contourArea(contours[i]); //计算每个轮廓区域
		cout << area << endl;
 
		if (area > 1000) //过滤噪声
		{
			//找轮廓的近似多边形或曲线
			double peri = arcLength(contours[i], true);
			approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true);
 
			cout << conPoly[i].size() << endl;
			boundRect[i] = boundingRect(conPoly[i]); //找每个近似曲线的最小上边界矩形
			myPoint.x = boundRect[i].x + boundRect[i].width / 2;
			myPoint.y = boundRect[i].y;
 
			//drawContours(img, conPoly, i, Scalar(255, 0, 255), 2); //绘制滤除噪声后的所有轮廓
			//rectangle(img, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 5); //绘制边界框
		}
	}
	return myPoint; //返回矩形框上边界中点坐标
}
 
vector<vector<int>> findColor(Mat img)
{
	Mat imgHSV, mask;
	cvtColor(img, imgHSV, COLOR_BGR2HSV);
 
	for (int i = 0; i < myColors.size(); i++) 
	{
		Scalar lower(myColors[i][0], myColors[i][1], myColors[i][2]);
		Scalar upper(myColors[i][3], myColors[i][4], myColors[i][5]);
		inRange(imgHSV, lower, upper, mask);
		//imshow(to_string(i), mask);
		Point myPoint = getContours(mask); //根据mask得到检测到当前颜色矩形框的上边界中点坐标
 
		if (myPoint.x != 0 && myPoint.y != 0) 
		{
			newPoints.push_back({ myPoint.x, myPoint.y, i }); //得到当前帧检测颜色的目标点
		}
	}
	return newPoints;
}
 
void drawOnCanvas(vector<vector<int>> newPoints, vector<Scalar> myColorValues)
{
	for (int i = 0; i < newPoints.size(); i++) 
	{
		circle(img, Point(newPoints[i][0], newPoints[i][1]), 10, myColorValues[newPoints[i][2]], FILLED);
	}
}
 
int main()
{
	VideoCapture cap(0);
 
	while (true) 
	{
		cap.read(img);
		newPoints = findColor(img);
		drawOnCanvas(newPoints, myColorValues);
 
		imshow("Canvas Img", img);
		waitKey(1);
	}
 
	return 0;
}

OpenCV [c++](图像处理基础示例小程序汇总)_图像处理_08

十、文档扫描

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
Mat imgOriginal, imgGray, imgBlur,imgCanny, imgThre, imgDil, imgErode, imgWarp, imgCrop;
vector<Point> initialPoints, docPoints;
 
float w = 420, h = 596;
 
 
Mat preProcessing(Mat img)
{
	cvtColor(img, imgGray, COLOR_BGR2GRAY); 
	GaussianBlur(imgGray, imgBlur, Size(3, 3), 3, 0); 
	Canny(imgBlur, imgCanny, 25, 75); 
 
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
	dilate(imgCanny, imgDil, kernel);
	//erode(imgDil, imgErode, kernel);
	return imgDil;
}
 
vector<Point> getContours(Mat imgDil) {
 
	vector<vector<Point>> contours; //轮廓数据
	vector<Vec4i> hierarchy;
 
	findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //通过预处理的二值图像找到所有轮廓contours
	//drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声)
	vector<vector<Point>> conPoly(contours.size());
	vector<Point> biggest;
	int maxArea = 0;
 
	for (int i = 0; i < contours.size(); i++)
	{
		double area = contourArea(contours[i]); //计算每个轮廓区域
		cout << area << endl;
 
		if (area > 1000) //过滤噪声
		{
			//找轮廓的近似多边形或曲线
			double peri = arcLength(contours[i], true);
			approxPolyDP(contours[i], conPoly[i], 0.02 * peri, true);
 
			if (area > maxArea && conPoly[i].size() == 4) {
 
				//drawContours(imgOriginal, conPoly, i, Scalar(255, 0, 255), 5); //绘制滤除噪声后的所有轮廓
				biggest = { conPoly[i][0], conPoly[i][1], conPoly[i][2], conPoly[i][3] };
				maxArea = area;
 
			}
		}
	}
	return biggest; //返回最大轮廓四个点的坐标
}
 
void drawPoints(vector<Point> points, Scalar color)
{
	for (int i = 0; i < points.size(); i++) 
	{
		circle(imgOriginal, points[i], 10, color, FILLED);
		putText(imgOriginal, to_string(i), points[i], FONT_HERSHEY_PLAIN, 4, color, 4);
	}
}
 
vector<Point> reorder(vector<Point> points)
{
	vector<Point> newPoints;
	vector<int> sumPoints, subPoints;
 
	for (int i = 0; i < 4; i++) 
	{
		sumPoints.push_back(points[i].x + points[i].y);
		subPoints.push_back(points[i].x - points[i].y);
	}
 
	newPoints.push_back(points[min_element(sumPoints.begin(), sumPoints.end()) - sumPoints.begin()]); //0
	newPoints.push_back(points[max_element(subPoints.begin(), subPoints.end()) - subPoints.begin()]); //1
	newPoints.push_back(points[min_element(subPoints.begin(), subPoints.end()) - subPoints.begin()]); //2
	newPoints.push_back(points[max_element(sumPoints.begin(), sumPoints.end()) - sumPoints.begin()]); //3
 
	return newPoints;
}
 
Mat getWarp(Mat img, vector<Point> points, float w, float h)
{
	Point2f src[4] = { points[0], points[1], points[2], points[3] };
	Point2f dst[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };
 
	Mat matrix = getPerspectiveTransform(src, dst);
	warpPerspective(img, imgWarp, matrix, Point(w, h));
	return imgWarp;
}
 
 
int main()
{
	string path = "paper.jpg";
	imgOriginal = imread(path);
	//resize(imgOriginal, imgOriginal, Size(), 0.5, 0.5);
 
	//Preprocessing
	imgThre = preProcessing(imgOriginal);
	//Get Contours - Biggest
	initialPoints = getContours(imgThre);
	//drawPoints(initialPoints, Scalar(0, 0, 255));
	docPoints = reorder(initialPoints);
	//drawPoints(docPoints, Scalar(0, 255, 0));
 
	//Warp
	imgWarp = getWarp(imgOriginal, docPoints, w, h);
 
	//Crop
	int cropValue = 5;
	Rect roi(cropValue, cropValue, w - (2 * cropValue), h - (2 * cropValue));
	imgCrop = imgWarp(roi);
 
	imshow("Image", imgOriginal);
	imshow("Image Dilation", imgThre);
	imshow("Image Warp", imgWarp);
	imshow("Image Crop", imgCrop);
	waitKey(0);
 
	return 0;
}

OpenCV [c++](图像处理基础示例小程序汇总)_图像处理_09

十一.车牌区域级联检测定位

#include <opencv2/opencv.hpp>
#include <iostream>
 
using namespace cv;
using namespace std;
 
int main()
{
	VideoCapture cap(0);
	Mat img;
 
	CascadeClassifier plateCascade;
	plateCascade.load("haarcascade_russian_plate_number.xml");
 
	if (plateCascade.empty()) { cout << "XML file not loaded" << endl; }
 
	vector<Rect> plates;
 
	while (true) {
 
		cap.read(img);
 
		plateCascade.detectMultiScale(img, plates, 1.1, 10);
 
		for (int i = 0; i < plates.size(); i++)
		{
			Mat imgCrop = img(plates[i]);
			imshow(to_string(i), imgCrop);
			imwrite("车牌.png", imgCrop);
			rectangle(img, plates[i].tl(), plates[i].br(), Scalar(0, 0, 255), 3);
		}
 
		imshow("Image", img);
		waitKey(1);
	}
	return 0;
}

OpenCV [c++](图像处理基础示例小程序汇总)_Image_10

OpenCV [c++](图像处理基础示例小程序汇总)_图像处理_11

标签:Mat,img,示例,int,c++,OpenCV,Scalar,contours,255
From: https://blog.51cto.com/ncut2020/6168671

相关文章

  • c++ string类的字符在内存的储存位置
    1.数据<=16字节,在当前栈区#include<iostream>#include<stdio.h>#include<stdlib.h>usingnamespacestd;intmain(){stringtemp="123456789012345";//注意长度int*a=(int*)malloc(sizeof(int));intb=0;for(a......
  • 初学C++第一天
    C语言简介:  BCPL->NewB->C->UNIX->Minix->Linux->gcc  C语言诞生于1971~1973年,美国贝尔实验室,肯.汤普逊和丹尼斯.里奇  C语言是专门为了编写操作系统而诞生的语言,天生适合对硬件编程,以运行速度快而著称,而且C语言非常适合编写数据结构和算法  因为C语言出现......
  • 【c&c++】#ifdef __cplusplus extern “C”的作用详解
    extern "C"的主要作用就是为了能够正确实现C++代码调用其他C语言代码。加上extern"C"后,会指示编译器这部分代码按C语言的进行编译,而不是C++的。由于C++支持函数重载,因此编译器编译函数的过程中会将函数的参数类型也加到编译后的代码中,而不仅仅是函数名;而C语言并不支持函数重载,因......
  • 【c&c++】C语言 char*和char[]用法
    char[]定义的是一个字符数组,注意强调是数组。char*定义的是一个字符串指针,注意强调是指针。char*s定义了一个char型的指针,它只知道所指向的内存单元,并不知道这个内存单元有多大,所以:当char*s=“hello”;后,不能使用s[0]=‘a’;语句进行赋值。这是将提示内存不能为"written"......
  • C/C++ 占位符总结
    ......
  • 全网最详细中英文ChatGPT-GPT-4示例文档-会议笔记文档智能转摘要从0到1快速入门——官
    目录Introduce简介setting设置Prompt提示Sampleresponse回复样本APIrequest接口请求python接口请求示例node.js接口请求示例curl命令示例json格式示例其它资料下载ChatGPT是目前最先进的AI聊天机器人,它能够理解图片和文字,生成流畅和有趣的回答。如果你想跟上AI时代的潮流......
  • C#调用C++ 平台调用P/Invoke 字符串【三】
    Gitp-invoke源码地址 C#调用C++平台调用P/Invoke调用约定【一】C#调用C++平台调用P/Invoke函数指针/回调函数【二】C#调用C++平台调用P/Invoke字符串【三】C#调用C++平台调用P/Invoke错误码LastError【四】C#调用C++平台调用P/Invoke结构体--输入输出参数、返回值、返......
  • C#调用C++ 平台调用P/Invoke 函数指针/回调函数【二】
    Gitp-invoke源码地址 C#调用C++平台调用P/Invoke调用约定【一】C#调用C++平台调用P/Invoke函数指针/回调函数【二】C#调用C++平台调用P/Invoke字符串【三】C#调用C++平台调用P/Invoke错误码LastError【四】C#调用C++平台调用P/Invoke结构体--输入输出参数、返回值、返......
  • C++/CLI 托管C++的数组介绍【4】
    Git源码地址 C++/CLI托管C++的托管与非托管字符串的相互转换【1】C++/CLI托管C++的数据类型介绍【2】C++/CLI托管C++的基本数据类型及函数【3】C++/CLI托管C++的数组介绍【4】C++/CLI托管C++之字符串封装【5】C++/CLI托管C++之enum枚举封装【6】C++/CLI托管C++之类、属性......
  • PrometheusAlert微信报警模板示例
    配置入口如下: 代码配置:{{$var:=.externalURL}}{{range$k,$v:=.alerts}}{{ifeq$v.status"resolved"}}[PROMETHEUS-恢复信息]({{$v.generatorURL}})>**[{{$v.labels.alertname}}]({{$var}})**><fontcolor="info">开......