首页 > 编程语言 >c++实现Matlab矩阵Matrix类(实矩阵Matrix、复矩阵CMatrix)

c++实现Matlab矩阵Matrix类(实矩阵Matrix、复矩阵CMatrix)

时间:2023-04-05 11:38:18浏览次数:59  
标签:return Matrix CMatrix column 矩阵 int data row



全栈工程师开发手册 (作者:栾鹏)

matlab2c动态链接库下载matlab库函数大全
matlab2c基础教程
matlab2c开发全解教程

开发注意事项:

1、目前matlab2c对矩阵的实现仅包含实数型、复数型数据。实数型矩阵使用Matrix定义,复数型矩阵使用CMatrix定义。
2、实数矩阵元素int、float元素类型会自动转为double。 复数元素类型为c++标准复数std::complex使用typedef别名定义为Complex
3、本应用开发环境为vs2012,建议使用c++11编译器
4、借助广大网友的力量,动态链接库会实时更新实现更多的函数功能,欢迎下载最新版。
5、开发中请尽量规范代码编写,调用函数使用Matlab2c::xx函数,避免与其他库同名函数、同名变量的冲突

matlab2c调用方法:

1、下载动态链接库
2、将Matlab2c.dll拷贝到exe同目录下
3、将Matlab2c.h、Matlab2c.lib放到项目头文件目录下
4、在cpp文件中引入下面的代码

#include "Matlab2c.h"
#pragma comment(lib,"Matlab2c.lib")  
using namespace Matlab2c;

c++实现Matlab矩阵Matrix类

使用c++实现Matlab实数矩阵Matrix类和复数矩阵CMatrix,是今后c++实现Matlab函数功能的基础,保留了Matlab中矩阵复制、赋值,加减乘数算数运算,()运算,正负号运算,以及矩阵使用类似Matlab中的生成方式,子矩阵读取,矩阵的扩充,变换等。建议首先查看matlab2c基础教程

在文章首部下载matlab2c动态链接库即可下载到该h文件。

#pragma once                  //防止文件被多重包含
#include <stdio.h>
#include <stdlib.h>
#include <string>             //字符串
#include <fstream>            //文件流
#include <iostream>           //数据流
#include <memory>             //内存操作
#include <regex>              //正则表达式
#include <exception>          //异常
#include <stdexcept>          //异常
#include <stdexcept>          //异常类型
#include <iterator>			  //迭代器
#include <array>              //可获取大小的固定数组
#include <vector>             //数据结构  连续分布的动态数组
#include <algorithm>          //STL算法
#include <numeric>            //数值计算算法
#include <math.h>             //数值计算算法
#include <complex>
#include <functional>         //函数指针,将函数指针作为自定义函数参数   实现设置回调函数
#include <time.h>             //时间类型
#include <stdarg.h>			  //各种参数形式
#include <algorithm>		  //min函数和max函数
#include <iomanip>			//为了能固定输出小数位的个数
#include <random>			//随机数库
#include <complex>			//引入复数

using namespace std;


//自定义命名空间
namespace Matlab2c
{
	class CMatrix;
	class Matrix;
	typedef std::complex<double> Complex;

	const float  FLOATERROR = 1.0e-6F;   //最小浮点数,浮点比较误差
	const double DOUBLEERROR = 1.0e-15;  //最小double,比较误差
	const long double LONGDOUBLEERROR = 1.0e-30;   //long double比较误差
	const double GoldNo = 0.618033399;		//黄金分割常数(1.0-0.381966)
	const double inf = DBL_MAX;   //无穷大
	const double pi = 3.1415926535898;   //圆周率
	const double PI = 3.1415926535898;   //圆周率
	const double eps = DOUBLEERROR;  //精度容许误差
	
	//内联函数,用于在出现逻辑错误时,弹出信息
	inline void throw_logic_error(string str){
		throw logic_error(str);
	}
	//声明调用字符串
	 void trim_string(string &s)
	 {
		 if (!s.empty())   
		 {  
			 s.erase(0,s.find_first_not_of(" "));  
			 s.erase(s.find_last_not_of(" ") + 1);  
		 }
	 }
	 void split_char(const std::string& yuan, std::vector<std::string>& arr, const std::string& split)
	 {
		 std::string::size_type pos1, pos2;
		 pos2 = yuan.find_first_of(split);
		 pos1 = 0;
		 while(std::string::npos != pos2)
		 {
			 if (pos1!=pos2)
				 arr.push_back(yuan.substr(pos1, pos2-pos1));
			 pos1 = pos2 + 1;
			 pos2 = yuan.find_first_of(split, pos1);   //find_first_of方法查询任意一个字符首次出现的位置,允许了使用多个分割字符
		 }
		 if(pos1 != yuan.length())  //分割剩余的最后一个字符串
			 arr.push_back(yuan.substr(pos1));
	 }
	 void split_string(const std::string& yuan, std::vector<std::string>& arr, const std::string& split)
	 {
		 std::string::size_type pos1, pos2;
		 pos2 = yuan.find(split);
		 pos1 = 0;
		 while(std::string::npos != pos2)
		 {
			 if (pos1!=pos2)
				 arr.push_back(yuan.substr(pos1, pos2-pos1));
			 pos1 = pos2 + split.size();
			 pos2 = yuan.find(split, pos1);   //find_first_of方法查询任意一个字符首次出现的位置,允许了使用多个分割字符
		 }
		 if(pos1 != yuan.length())
			 arr.push_back(yuan.substr(pos1));
	 }

	//比较两double浮点数相等
	 bool FloatEqual(double lhs, double rhs)		
	 {		 
		 if (std::abs(lhs - rhs) < Matlab2c::DOUBLEERROR)
			 return true;
		 else
			 return false;
	 }
	 //比较两double浮点数不相等
	 bool FloatNotEqual(double lhs, double rhs)	
	 {
		 if (std::abs(lhs - rhs) >= Matlab2c::DOUBLEERROR)
			 return true;
		 else
			 return false;
	 }


//定义矩阵类
 class Matrix{
//公共数据
public:		
	double* data;
	int row;
	int column;
	//构造函数,构建空矩阵
	Matrix(){
		row=0;column=0;data=nullptr;
	}
	//由doube转化为1x1矩阵
	Matrix(double item){
		row=1;column=1;this->data=new double[row*column];
		data[0]=item;
	}
	//构建矩阵,不赋值
	Matrix(int row,int column){
		this->row=row;
		this->column=column;
		this->data=new double[row*column];
	}
	//构建值矩阵,矩阵中每个元素都等于给定值
	Matrix(int row,int column,double data){
		this->row=row;
		this->column=column;
		this->data=new double[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data;
	}
	//根据数组构建矩阵,复制元素
	Matrix(int row,int column,double *data){
		this->row=row;
		this->column=column;
		this->data=new double[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data[i];
	}
	//根据数组构建矩阵,复制元素
	Matrix(double *data,int row,int column){
		this->row=row;
		this->column=column;
		this->data=new double[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data[i];
	}
	//根据向量构建矩阵
	template<class T>
	Matrix(vector<T> a){
		this->row=a.size();
		this->column=1;
		this->data=new double[row*column];
		for (int i=0;i<a.size();i++)
			this->data[i] = (double)a[i];
	}
	//根据向量构建矩阵
	template<class T>
	Matrix(vector<T> a,int row,int column){
		if (a.size()<row*column)
		{
			throw_logic_error("无法根据向量vector生成矩阵");
			return;
			//*this=NULL;
		}
		this->row=row;
		this->column=column;
		this->data=new double[row*column];
		for (int i=0;i<a.size();i++)
			this->data[i] = (double)a[i];
	}
	//根据向量构建矩阵
	Matrix(vector<vector<double>> a){
		if (a.size()>0 && a[0].size()>0)
		{
			this->row=a.size();
			this->column=a[0].size();
			this->data=new double[row*column];
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					this->data[i*column+j] = a[i][j];
		}
	}
	//通过matlab字符串构造矩阵
	Matrix(string str){    //去除两边空格  去除两边[]   按;分割  按,或空格分割   按:分割
		Matrix a= str2matrix(str);
		this->row=a.row;
		this->column=a.column;
		this->data=new double[row*column];
		for (int i=0;i<a.row*a.column;i++)
			this->data[i]=a.data[i];
	}
	Matrix str2matrix(string str){   //根据一个字符串判断是否      \[([0-9\-\.:]*[ ,]*;*)+\]    基本元素为0-9.:-组成   行内连接使用空格或,行间连接使用;最外层为[]
		trim_string(str);   //去掉首尾空格

		if (str[0]=='[' && str[str.length()-1]==']')   //首尾是否为[]
		{
			str = str.substr(1,str.length()-2);
			Matrix p = str2matrix(str);
			return p;
		}
		else if(str.find(';')!= string::npos){    //是否包含;  是否有行
			vector<string> strarr1;
			split_char(str,strarr1,";");   //分割每行
			Matrix p;
			for (int i=0;i<strarr1.size();i++)
			{
				Matrix temp=str2matrix(strarr1[i]);   //根据每一行数据字符串,获取每一行的数据
				p.append_bottom(temp);   //增加一行数据
			}
			return p;
		}else if (str.find_first_of(", ")!= string::npos)   //是否包含 ,是否有多列
		{
			vector<string> strarr2;
			split_char(str,strarr2,", ");   //分割每列

			Matrix p;
			for (int i=0;i<strarr2.size();i++)
			{
				Matrix temp=str2matrix(strarr2[i]);   //根据每一列数据字符串,获取每一列的数据
				p.append_right(temp);   //增加一列数据
			}
			return p;
		}else if (str.find(':')!= string::npos)    //判断每个元素是否是增量元素
		{
			vector<string> strarr3;
			split_char(str,strarr3,":");   
			if (strarr3.size()==3)//如果包含首元素、步长、尾元素
			{
				double begindata=atof(strarr3[0].c_str());
				double jiangedata = atof(strarr3[1].c_str());
				int num = (int)((atof(strarr3[2].c_str())-begindata)/jiangedata)+1;
				double* date_temp = new double[num];
				for (int i=0;i<num;i++)
				{
					date_temp[i]= begindata+jiangedata*i;
				}
				return Matrix(1,num,date_temp);    //分析增量矩阵,返回成行向量,按道理也可以返回成列矩阵
			}
			if (strarr3.size()==2)//如果包含首元素,尾元素,默认步长为1
			{
				double begindata=atof(strarr3[0].c_str());
				int num = (int)((atof(strarr3[1].c_str())-begindata))+1;
				double* date_temp = new double[num];
				for (int i=0;i<num;i++)
				{
					date_temp[i]= begindata+i;
				}
				return Matrix(1,num,date_temp);    //分析增量矩阵,返回成行向量,按道理也可以返回成列矩阵
			}
		}else
		{
			return Matrix(1,1,atof(str.c_str()));   //如果是纯数字就转化为double
		}
	}
	//复制构造函数
	Matrix(const Matrix& another){
		this->row=another.row;
		this->column=another.column;
		this->data=new double[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=another.data[i];
	}	
	//重载赋值运算符,保留在matlab中赋值等于深复制的效果
	Matrix& operator=(const Matrix& another){
		if(this==&another)
			return *this;
		this->row=another.row;
		this->column=another.column;
		if(data !=nullptr)
			delete[] data;
		this->data=new double[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=another.data[i];
		return *this;
	}
	//重载()运算符,下标从0开始的习惯,读取时调用
	double operator()(int i,int j) const
	{
		if (i>this->row-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		if (j>this->column-1 || j<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i*column+j];
	}
	//重载()运算符,下标从0开始的习惯,写入时调用
	double& operator()(int i,int j)
	{
		if (i>this->row-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		if (j>this->column-1 || j<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i*column+j];
	}
	//重载()运算符,下标从0开始的习惯,读取时调用
	double operator()(int i) const
	{
		if (i>this->row*this->column-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i];
	}
	//重载()运算符,下标从0开始的习惯
	double& operator()(int i){
		if (i>this->row*this->column-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i];
	}
	//重载()运算符,下标从0开始的习惯,读取子矩阵,读取时调用
	Matrix operator()(int row1,int row2,int column1,int column2) const   //包含所有下标行或列
	{
		Matrix p(row2-row1+1,column2-column1+1);
		for (int i=row1;i<row2+1;i++)
			for (int j=column1;j<column2+1;j++)
				p(i-row1,j-column1) = this->data[i*column+j];
		return p;
	}
	//根据字符串读取子矩阵,不能对子矩阵赋值
	Matrix operator()(string str){
		Matrix rowcontrol,columncontrol;   //行控制数列,和列控制数列
		trim_string(str);   //去掉首尾空格
		if(str==":")
			return Matrix(*this);
		int index=str.find_first_of(",");
		if (index>-1)   //如果包含,表明同时控制行和列
		{
			string strtemp1=str.substr(0,str.find_first_of(","));   //查询行控制字符串
			trim_string(strtemp1);   //去掉首尾空格
			if (strtemp1==":")   //表示整行或整列。不做处理
			{
				rowcontrol = Matrix(1,row);
				for (int i=0;i<row;i++)
					rowcontrol(i)=i;
			}
			else
				rowcontrol = Matrix(strtemp1);

			string strtemp2=str.substr(str.find_first_of(",")+1);   //查询列控制字符串
			trim_string(strtemp2);   //去掉首尾空格
			if (strtemp2==":")   //表示整行或整列。不做处理
			{
				columncontrol = Matrix(1,column);
				for (int i=0;i<column;i++)
					columncontrol(i)=i;
			}	
			else
				columncontrol = Matrix(strtemp2);
			Matrix p(rowcontrol.row*rowcontrol.column,columncontrol.row*columncontrol.column);
			for (int i=0;i<rowcontrol.row*rowcontrol.column;i++)
			{
				for (int j=0;j<columncontrol.row*columncontrol.column;j++){
					p(i,j) = this->data[(int)(rowcontrol.data[i]*column+columncontrol.data[j])];
				}
			}
			return p;
		}
		else			//不包含,输入按向量使用,取向量局部数据
		{
			columncontrol = Matrix(str);
			Matrix p(1,columncontrol.row*columncontrol.column);
			for (int j=0;j<columncontrol.row*columncontrol.column;j++){
				p(j) = this->data[(int)(columncontrol.data[j])];
			}
			return p;
		}

	}
	//转化函数   
	//operator double() const
	//{
	//	return data[0];
	//}
	//重载加法运算符
	Matrix operator+(double xi){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]+xi;
		return p;
	}
	//重载加法运算符
	Matrix& operator+=(double xi){
		for (int i=0;i<row*column;i++)
			this->data[i] += xi;
		return *this;
	}
	//重载加法运算符
	Matrix operator+(Matrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		Matrix p(row,column);
		for (int i=0;i<row*column;i++)
			p(i)=data[i]+another(i);
		return p;
	}
	//重载加法运算符
	Matrix& operator+=(Matrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		for (int i=0;i<row*column;i++)
			this->data[i]+=another.data[i];
		return *this;
	}
	//重载减法运算符
	Matrix operator-(double xi){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]-xi;
		return p;
	}
	//重载减法运算符
	Matrix& operator-=(double xi){
		for (int i=0;i<row*column;i++)
			this->data[i] -= xi;
		return *this;
	}
	//重载减法运算符
	Matrix operator-(Matrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		Matrix p(row,column);
		for (int i=0;i<row*column;i++)
			p.data[i]=data[i]-another.data[i];
		return p;
	}
	//重载减法运算符
	Matrix& operator-=(Matrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		for (int i=0;i<row*column;i++)
			this->data[i]-=another.data[i];
		return *this;
	}
	//重载乘法运算符
	Matrix operator*(double xi){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = this->data[i]*xi;
		return p;
	}
	//重载乘法运算符
	Matrix& operator*=(double xi){
		for (int i=0;i<row*column;i++)
			this->data[i] *= xi;
		return *this;
	}
	//重载乘法运算符
	Matrix operator*(Matrix& another){
		if(!another.data || !this->data)
			throw_logic_error("矩阵乘法数据为空");
		if (column!=another.row)
			throw_logic_error ("矩阵不匹配");
		Matrix p(row,another.column);
		for (int i=0;i<p.row;i++)
			for (int j=0;j<p.column;j++)
			{
				double sum=0;
				for (int t=0;t<column;t++)  //第一个矩阵的第i行乘以第二个矩阵的第j列
					sum+=data[i*column+t]*another(t,j);
				p(i,j) = sum;
			}
		return p;
	}
	//重载除法运算符
	Matrix operator/(double xi){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]/xi;
		return p;
	}
	//重载除法运算符
	Matrix& operator/=(double xi){
		for (int i=0;i<row*column;i++)
			this->data[i] /= xi;
		return *this;
	}
	//重载矩阵等号==运算符
	bool operator==(Matrix& another){
		if (this->row!= another.row)
			return false;
		if (this->column != another.column)
			return false;

		for (int i = 0; i < row*column; i ++)
			if (FloatNotEqual(this->data[i],another.data[i]))
				return false;
		return true;
	}
	//重载矩阵等号!=运算符
	bool operator!=(Matrix& another){
		if (this->row!= another.row)
			return true;
		if (this->column != another.column)
			return true;

		for (int i = 0; i < row*column; i ++)
			if (FloatNotEqual(this->data[i],another.data[i]))
				return true;
		return false;
	}
	//重载一元操作符:正号
	Matrix operator +() const
	{
		return *this;			//不用作任何处理,维持原状
	}
	//重载一元操作符:负号
	Matrix operator -() const
	{
		Matrix p(row,column);
		for (int i=0;i<row*column;i++)
			p.data[i]=-this->data[i];
		return p;
	}
	//矩阵转置,不改变源矩阵
	Matrix T()
	{
		Matrix p(column,row);
		for(int i=0;i<row;i++)
			for(int j=0;j<column;j++)
				p(j,i)=(*this)(i,j);
		return p;
	}

	//矩阵左扩展,改变了源矩阵
	void append_left(Matrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new double[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_column=a.column+column;
		if (a.row==this->row)
		{
			double* datanew=new double[row*new_column];
			for (int i=0;i<a.row;i++)
			{
				for (int j=0;j<a.column;j++)
					datanew[i*new_column+j]=a(i,j);
				for (int j=0;j<column;j++)
					datanew[i*new_column+j+a.column]=this->data[i*column+j];
			}
			this->column=new_column;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵行数不等");
		}
	}
	//向量首部添加元素
	void append_left(double x){
		Matrix a(1,1,x);
		if(column==1)
			this->append_top(a);
		else if(row==1)
			this->append_left(a);
	}
	//矩阵右扩展,改变了源矩阵
	void append_right(Matrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new double[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_column=a.column+column;
		if (a.row==this->row)
		{
			double* datanew=new double[row*new_column];
			for (int i=0;i<row;i++)
			{
				for (int j=0;j<column;j++)
					datanew[i*new_column+j]=this->data[i*column+j];
				for (int j=0;j<a.column;j++)
					datanew[i*new_column+j+column]=a(i,j);
			}
			this->column=new_column;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵行数不等");
		}
	}
	//向量尾部添加元素
	void append_right(double x){
		Matrix a(1,1,x);
		if(column==1)
			this->append_bottom(a);
		else if(row==1)
			this->append_right(a);
	}
	//矩阵上扩展,改变了源矩阵
	void append_top(Matrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new double[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_row=a.row+row;
		if (a.column==this->column)
		{
			double* datanew=new double[new_row*column];
			for (int i=0;i<a.row;i++)
				for (int j=0;j<a.column;j++)
					datanew[i*column+j]=a(i,j);
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					datanew[(i+a.row)*column+j]=this->data[i*column+j];
			this->row=new_row;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵列数不等");
		}
	}
	//向量首部添加元素
	void append_top(double x){
		Matrix a(1,1,x);
		if(column==1)
			this->append_top(a);
		else if(row==1)
			this->append_left(a);
	}
	//矩阵下扩展,改变了源矩阵
	void append_bottom(Matrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new double[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_row=a.row+row;
		if (a.column==this->column)
		{
			double* datanew=new double[new_row*column];
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					datanew[i*column+j]=this->data[i*column+j];
			for (int i=0;i<a.row;i++)
				for (int j=0;j<a.column;j++)
					datanew[(i+row)*column+j]=a(i,j);
			this->row=new_row;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵列数不等");
		}
	}
	//向量尾部添加元素
	void append_bottom(double x){
		Matrix a(1,1,x);
		if(column==1)
			this->append_bottom(a);
		else if(row==1)
			this->append_right(a);
	}
	//删除指定行,改变了源矩阵
	void remove_row(int rowindex)  //删除指定行
	{
		if (rowindex>=row || rowindex<0)
		{
			throw_logic_error("删除行范围越界");
			return;
		}
		double* datetemp = data;
		int newrow=row-1;
		data = new double[newrow*column];
		for (int i=0;i<rowindex;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[i*column+j];
		for (int i=rowindex;i<newrow;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[(i+1)*column+j];
		row=newrow;
		delete[] datetemp;
	}
	//删除指定行,改变了源矩阵
	void remove_row(int row1,int row2)  //删除多行,包含两个下标
	{
		if (row1>=row || row2>=row || row1<0||row2<0)
		{
			throw_logic_error("删除行范围越界");
			return;
		}
		double* datetemp = data;
		int newrow=row-row2+row1-1;
		data = new double[newrow*column];
		for (int i=0;i<row1;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[i*column+j];
		for (int i=row1;i<newrow;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[(i+row2-row1+1)*column+j];
		row=newrow;
		delete[] datetemp;
	}
	//删除指定列,改变了源矩阵
	void remove_column(int columnindex)  //删除指定列
	{
		if (columnindex>=column || columnindex<0)
		{
			throw_logic_error("删除列范围越界");
			return;
		}
		double* datetemp = data;
		int newcolumn=column-1;
		data = new double[row*newcolumn];
		for (int i=0;i<row;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+1];
		}
		column=newcolumn;
		delete[] datetemp;
	}
	//删除指定列,改变了源矩阵
	void remove_column(int column1,int column2)  //删除多列,包含两个下标
	{
		if (column1>=column || column2>=column || column1<0||column2<0)
		{
			throw_logic_error("删除列范围越界");
			return;
		}
		double* datetemp = data;
		int newcolumn=column-column2+column1-1;
		data = new double[row*newcolumn];
		
		for (int i=0;i<row;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+column2-column1+1];
		}
		column=newcolumn;
		delete[] datetemp;
	}
	//删除指定的行和列
	void remove_row_column(int rowindex,int columnindex)
	{
		if (columnindex>=column || columnindex<0 || rowindex<0 || rowindex>=row)
		{
			throw_logic_error("删除行列范围越界");
			return;
		}
		double* datetemp = data;
		int newcolumn=column-1;
		int newrow=row-1;
		data = new double[newrow*newcolumn];
		for (int i=0;i<rowindex;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+1];
		}
		for (int i=rowindex;i<newrow;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[(i+1)*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[(i+1)*column+j+1];
		}
		column=newcolumn;
		row =newrow;
		delete[] datetemp;
	}
	//删除多行和多列
	void remove_row_column(int row1,int row2,int column1,int column2)
	{
		if (column1>=column || column1<0 || row1<0 || row1>=row || column2>=column || column2<0 || row2<0 || row2>=row)
		{
			throw_logic_error("删除行列范围越界");
			return;
		}
		double* datetemp = data;
		int newcolumn=column-column2+column1-1;
		int newrow=row-row2+row1-1;
		data = new double[newrow*newcolumn];
		for (int i=0;i<row1;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+column2-column1+1];
		}
		for (int i=row1;i<newrow;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[(i+row2-row1+1)*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[(i+row2-row1+1)*column+j+column2-column1+1];
		}
		column=newcolumn;
		row =newrow;
		delete[] datetemp;
	}
	//替换局部矩阵,改变了源矩阵,
	void replace(Matrix &a,int row1,int column1) 
	{
		int endrow=std::min(this->row,a.row+row1);
		int endcolumn=std::min(this->column,a.column+column1);
		for (int i=row1;i<endrow;i++)
			for (int j=column1;j<endcolumn;j++)
				this->data[i*column+j] = a((i-row1),j-column1);
	}



	//矩阵元素遍历操作,需要传入遍历函数,函数传入元素值,所属行,所属列,源矩阵,返回替换值。不改变源矩阵
	Matrix map(function<double(double item,int row,int column,Matrix& src)> fun){
		Matrix p(this->row,this->column);
		for (int i=0;i<this->row;i++)
			for (int j=0;j<this->column;j++)
				p(i,j)=fun(this->data[i*column+j],i,j,*this);
		return p;	
	}

	//定义一个按行遍历函数(固定格式),每一行得到一个值,遍历结果为一个列向量。
	 //输入参数:前一个元素,当前元素,当前元素所属行,当前元素所属列,源矩阵
	//迭代从第二项开始,prev初始值为第一项,cur初始值为第二项。计算值自动传给下一函数的prev,返回最后一次迭代产生的值
	Matrix map_row(function<double(double prev,double cur,int row,int column,Matrix& src)> fun){
		Matrix p(this->row,1);
		for (int i=0;i<this->row;i++)
		{
			double result = this->data[i*column];
			for (int j=1;j<this->column;j++)
				result = fun(result,this->data[i*column+j],i,j,*this);
			p(i) = result;
		}
		return p;
	}

	//定义一个按列遍历函数(固定格式),每一列得到一个值
	 //输入参数:前一个元素,当前元素,当前元素所属行,当前元素所属列,源矩阵
	//迭代从第二项开始,prev初始值为第一项,cur初始值为第二项。计算值自动传给下一函数的prev,返回最后一次迭代产生的值
	Matrix map_column(function<double(double prev,double cur,int row,int column,Matrix& src)> fun){
		Matrix p(1,this->column);
		for (int j=0;j<this->column;j++)
		{
			double result = this->data[j];
			for (int i=1;i<this->row;i++)
				result = fun(result,this->data[i*column+j],i,j,*this);
			p(j) = result;
		}
		return p;
	}
	//点运算
	Matrix dot(Matrix& a,string operation)
	{
		if (row!=a.row || column!=a.column)
		{
			throw_logic_error("点运算矩阵不匹配");
			return NULL;
		}
		Matrix p(row,column);
		if (operation=="+")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)+a(i,j);
		else if (operation=="-")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)-a(i,j);
		else if (operation=="*")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)*a(i,j);
		else if (operation=="/")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)/a(i,j);
		else if (operation=="\\")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=a(i,j)/(*this)(i,j);
		return p;
	}

	//查询是否是向量
	bool isVector()
	{
		if (row==1||column==1)
			return true;
		return false;
	}
	//字符串形式表示
	string toString(){
		stringstream back;
		for (int i=0;i<row;i++)
		{
			for(int j=0;j<column;j++)
			{
				back<< fixed << setprecision(4)<<data[i*column+j];
				back<<"   ";
			}
			if(i!=row-1)
				back<<"\n";
		}
		return back.str();
	}
	//按行优先转化为series
	double* toSeries(){
		double* back = new double[row*column];
		for (int i=0;i<column*row;i++)
			back[i] = data[i];
		return back;
	}
	//转化为二位数组
	double** toArray(){
		double** back = new double*[column];
		int n=0;
		for (int i=0;i<row;i++){
			back[i]=new double[column];
			for(int j=0;j<column;j++)
				back[i][j] = data[i*column+j];
		}
		return back;
	}
	//按行优先转化为一维vector
	vector<double> toVector(){
		int t=0;
		vector<double> back(row*column);
		for (int i=0;i<row;i++)
			for (int j=0;j<column;j++)
				back[t++]=data[i*column+j];
		return back;
	}
	//按行优先转化为二维vector
	vector<vector<double>> toVector2(){
		int rowindex=0;
		int columnindex=0;
		vector<vector<double>> back(row);
		for (int i=0;i<row;i++)
		{
			columnindex=0;
			vector<double> newrow(column);
			for (int j=0;j<column;j++)
				newrow[columnindex++]=data[i*column+j];
			back[rowindex++]=newrow;
		}
		return back;
	}
	//析构函数,不能使用析构函数的原因在于很多函数局部类型返回需要保留data数据,不能使局部类型析构造成接收对象不可用。但是如果重写了赋值运算符,可以加上,因为在函数内,先赋值,在析构局部变量
	~Matrix(){
		row=0;column=0;
		if(data !=nullptr){
			delete[] data;
			data=nullptr;
		}
	}

};




//定义复数矩阵类
_DLL_API class CMatrix{
//公共数据
public:		
	Complex* data;
	int row;
	int column;
	//构造函数,构建空矩阵
	CMatrix(){
		row=0;column=0;data=nullptr;
	}
	//由Complex转化为1x1矩阵
	CMatrix(Complex item){
		row=1;column=1;this->data=new Complex[row*column];
		data[0]=item;
	}
	//由实矩阵转化为复数矩阵
	CMatrix(Matrix& a){
		row=a.row;
		column=a.column;
		this->data=new Complex[row*column];
		for (int i=0;i<row;i++)
			for(int j=0;j<column;j++)
				data[i*column+j]=Complex(a(i,j),0);
	}
	//由实部和虚部组成复数矩阵
	CMatrix(Matrix& real,Matrix& imag){
		row=real.row;
		column=real.column;
		this->data=new Complex[row*column];
		for (int i=0;i<row;i++)
			for(int j=0;j<column;j++)
				data[i*column+j]=Complex(real(i,j),imag(i,j));
	}

	//构建矩阵,不赋值
	CMatrix(int row,int column){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
	}
	//构建值矩阵,矩阵中每个元素都等于给定值
	CMatrix(int row,int column,Complex data){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data;
	}
	//根据数组构建矩阵,复制元素
	CMatrix(int row,int column,double *x,double *y){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=Complex(x[i],y[i]);
	}
	//根据数组构建矩阵,复制元素
	CMatrix(double *x,double *y,int row,int column){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=Complex(x[i],y[i]);
	}
	//根据数组构建矩阵,复制元素
	CMatrix(int row,int column,Complex *data){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data[i];
	}
	//根据数组构建矩阵,复制元素
	CMatrix(Complex *data,int row,int column){
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=data[i];
	}
	//根据向量构建矩阵
	CMatrix(vector<Complex> a){
		this->row=a.size();
		this->column=1;
		this->data=new Complex[row*column];
		for (int i=0;i<a.size();i++)
			this->data[i] = a[i];
	}
	//根据向量构建矩阵
	CMatrix(vector<Complex> a,int row,int column){
		if (a.size()<row*column)
		{
			throw_logic_error("无法根据向量vector生成矩阵");
			return;
			//*this=NULL;
		}
		this->row=row;
		this->column=column;
		this->data=new Complex[row*column];
		for (int i=0;i<a.size();i++)
			this->data[i] = a[i];
	}
	//根据向量构建矩阵
	CMatrix(vector<vector<Complex>> a){
		if (a.size()>0 && a[0].size()>0)
		{
			this->row=a.size();
			this->column=a[0].size();
			this->data=new Complex[row*column];
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					this->data[i*column+j] = a[i][j];
		}
	}
	//复制构造函数
	CMatrix(const CMatrix& another){
		this->row=another.row;
		this->column=another.column;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=another.data[i];
	}	
	//重载赋值运算符,保留在matlab中赋值等于深复制的效果
	CMatrix& operator=(const CMatrix& another){
		if(this==&another)
			return *this;
		this->row=another.row;
		this->column=another.column;
		if(data !=nullptr)   //必须新释放之前的内存,不然内存泄漏了
			delete[] data;
		this->data=new Complex[row*column];
		for (int i=0;i<row*column;i++)
			this->data[i]=another.data[i];
		return *this;
	}
	//重载()运算符,下标从0开始的习惯,读取时调用
	Complex operator()(int i,int j) const
	{
		if (i>this->row-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		if (j>this->column-1 || j<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i*column+j];
	}
	//重载()运算符,下标从0开始的习惯,写入时调用
	Complex& operator()(int i,int j)
	{
		if (i>this->row-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		if (j>this->column-1 || j<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i*column+j];
	}
	//重载()运算符,下标从0开始的习惯,读取时调用
	Complex operator()(int i) const
	{
		if (i>this->row*this->column-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i];
	}
	//重载()运算符,下标从0开始的习惯
	Complex& operator()(int i){
		if (i>this->row*this->column-1 || i<0)
			throw_logic_error("读取矩阵元素,超出矩阵范围");
		return data[i];
	}
	//重载()运算符,下标从0开始的习惯,读取子矩阵,读取时调用
	CMatrix operator()(int row1,int row2,int column1,int column2) const   //包含所有下标行或列
	{
		CMatrix p(row2-row1+1,column2-column1+1);
		for (int i=row1;i<row2+1;i++)
			for (int j=column1;j<column2+1;j++)
				p(i-row1,j-column1) = this->data[i*column+j];
		return p;
	}
	
	//重载加法运算符
	CMatrix operator+(Complex xi){
		CMatrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]+xi;
		return p;
	}
	//重载加法运算符
	CMatrix& operator+=(Complex xi){
		for (int i=0;i<row*column;i++)
			this->data[i] += xi;
		return *this;
	}
	//重载加法运算符
	CMatrix operator+(CMatrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		CMatrix p(row,column);
		for (int i=0;i<row*column;i++)
			p(i)=data[i]+another(i);
		return p;
	}
	//重载加法运算符
	CMatrix& operator+=(CMatrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		for (int i=0;i<row*column;i++)
			this->data[i]+=another.data[i];
		return *this;
	}
	//重载减法运算符
	CMatrix operator-(Complex xi){
		CMatrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]-xi;
		return p;
	}
	//重载减法运算符
	CMatrix& operator-=(Complex xi){
		for (int i=0;i<row*column;i++)
			this->data[i] -= xi;
		return *this;
	}
	//重载减法运算符
	CMatrix operator-(CMatrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		CMatrix p(row,column);
		for (int i=0;i<row*column;i++)
			p.data[i]=data[i]-another.data[i];
		return p;
	}
	//重载减法运算符
	CMatrix& operator-=(CMatrix& another){
		if(!another.data)
			return *this;
		if (row!=another.row || column!=another.column)
			throw_logic_error ("矩阵不匹配");
		for (int i=0;i<row*column;i++)
			this->data[i]-=another.data[i];
		return *this;
	}
	//重载乘法运算符
	CMatrix operator*(Complex xi){
		CMatrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = this->data[i]*xi;
		return p;
	}
	//重载乘法运算符
	CMatrix& operator*=(Complex xi){
		for (int i=0;i<row*column;i++)
			this->data[i] *= xi;
		return *this;
	}
	//重载乘法运算符
	CMatrix operator*(CMatrix& another){
		if(!another.data || !this->data)
			throw_logic_error("矩阵乘法数据为空");
		if (column!=another.row)
			throw_logic_error ("矩阵不匹配");
		CMatrix p(row,another.column);
		for (int i=0;i<p.row;i++)
			for (int j=0;j<p.column;j++)
			{
				Complex sum=0;
				for (int t=0;t<column;t++)  //第一个矩阵的第i行乘以第二个矩阵的第j列
					sum+=data[i*column+t]*another(t,j);
				p(i,j) = sum;
			}
		return p;
	}
	//重载除法运算符
	CMatrix operator/(Complex xi){
		CMatrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
			p.data[i] = data[i]/xi;
		return p;
	}
	//重载除法运算符
	CMatrix& operator/=(Complex xi){
		for (int i=0;i<row*column;i++)
			this->data[i] /= xi;
		return *this;
	}
	//重载矩阵等号==运算符
	bool operator==(CMatrix& another){
		if (this->row!= another.row)
			return false;
		if (this->column != another.column)
			return false;

		for (int i = 0; i < row*column; i ++)
			if (FloatNotEqual(this->data[i].real(),another.data[i].real()) || FloatNotEqual(this->data[i].imag(),another.data[i].imag()))
				return false;
		return true;
	}
	//重载矩阵等号!=运算符
	bool operator!=(CMatrix& another){
		if (this->row!= another.row)
			return true;
		if (this->column != another.column)
			return true;

		for (int i = 0; i < row*column; i ++)
			if (FloatNotEqual(this->data[i].real(),another.data[i].real()) || FloatNotEqual(this->data[i].imag(),another.data[i].imag()))
				return true;
		return false;
	}
	//重载一元操作符:正号
	CMatrix operator +() const
	{
		return *this;			//不用作任何处理,维持原状
	}
	//重载一元操作符:负号
	CMatrix operator -() const
	{
		CMatrix p(row,column);
		for (int i=0;i<row*column;i++)
			p.data[i]=-this->data[i];
		return p;
	}
	//矩阵转置,不改变源矩阵
	CMatrix T()
	{
		CMatrix p(column,row);
		for(int i=0;i<row;i++)
			for(int j=0;j<column;j++)
				p(j,i)=(*this)(i,j);
		return p;
	}

	//矩阵左扩展,改变了源矩阵
	void append_left(CMatrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new Complex[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_column=a.column+column;
		if (a.row==this->row)
		{
			Complex* datanew=new Complex[row*new_column];
			for (int i=0;i<a.row;i++)
			{
				for (int j=0;j<a.column;j++)
					datanew[i*new_column+j]=a(i,j);
				for (int j=0;j<column;j++)
					datanew[i*new_column+j+a.column]=this->data[i*column+j];
			}
			this->column=new_column;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵行数不等");
		}
	}
	//向量首部添加元素
	void append_left(Complex x){
		CMatrix a(1,1,x);
		if(column==1)
			this->append_top(a);
		else if(row==1)
			this->append_left(a);
	}
	//矩阵右扩展,改变了源矩阵
	void append_right(CMatrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new Complex[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_column=a.column+column;
		if (a.row==this->row)
		{
			Complex* datanew=new Complex[row*new_column];
			for (int i=0;i<row;i++)
			{
				for (int j=0;j<column;j++)
					datanew[i*new_column+j]=this->data[i*column+j];
				for (int j=0;j<a.column;j++)
					datanew[i*new_column+j+column]=a(i,j);
			}
			this->column=new_column;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵行数不等");
		}
	}
	//向量尾部添加元素
	void append_right(Complex x){
		CMatrix a(1,1,x);
		if(column==1)
			this->append_bottom(a);
		else if(row==1)
			this->append_right(a);
	}
	//矩阵上扩展,改变了源矩阵
	void append_top(CMatrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new Complex[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_row=a.row+row;
		if (a.column==this->column)
		{
			Complex* datanew=new Complex[new_row*column];
			for (int i=0;i<a.row;i++)
				for (int j=0;j<a.column;j++)
					datanew[i*column+j]=a(i,j);
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					datanew[(i+a.row)*column+j]=this->data[i*column+j];
			this->row=new_row;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵列数不等");
		}
	}
	//向量首部添加元素
	void append_top(Complex x){
		CMatrix a(1,1,x);
		if(column==1)
			this->append_top(a);
		else if(row==1)
			this->append_left(a);
	}
	//矩阵下扩展,改变了源矩阵
	void append_bottom(CMatrix& a){
		if (a.row==0)
			return;
		if (this->row==0){
			this->row = a.row;
			this->column=a.column;
			this->data = new Complex[row*column];
			for (int i=0;i<row*column;i++)
				this->data[i]=a.data[i];
			return;
		}
		int new_row=a.row+row;
		if (a.column==this->column)
		{
			Complex* datanew=new Complex[new_row*column];
			for (int i=0;i<row;i++)
				for (int j=0;j<column;j++)
					datanew[i*column+j]=this->data[i*column+j];
			for (int i=0;i<a.row;i++)
				for (int j=0;j<a.column;j++)
					datanew[(i+row)*column+j]=a(i,j);
			this->row=new_row;
			delete[] this->data;
			this->data = datanew;
		}else
		{
			throw_logic_error("合并矩阵列数不等");
		}
	}
	//向量尾部添加元素
	void append_bottom(Complex x){
		CMatrix a(1,1,x);
		if(column==1)
			this->append_bottom(a);
		else if(row==1)
			this->append_right(a);
	}
	//删除指定行,改变了源矩阵
	void remove_row(int rowindex)  //删除指定行
	{
		if (rowindex>=row || rowindex<0)
		{
			throw_logic_error("删除行范围越界");
			return;
		}
		Complex* datetemp = data;
		int newrow=row-1;
		data = new Complex[newrow*column];
		for (int i=0;i<rowindex;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[i*column+j];
		for (int i=rowindex;i<newrow;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[(i+1)*column+j];
		row=newrow;
		delete[] datetemp;
	}
	//删除指定行,改变了源矩阵
	void remove_row(int row1,int row2)  //删除多行,包含两个下标
	{
		if (row1>=row || row2>=row || row1<0||row2<0)
		{
			throw_logic_error("删除行范围越界");
			return;
		}
		Complex* datetemp = data;
		int newrow=row-row2+row1-1;
		data = new Complex[newrow*column];
		for (int i=0;i<row1;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[i*column+j];
		for (int i=row1;i<newrow;i++)
			for (int j=0;j<this->column;j++)
				this->data[i*column+j] = datetemp[(i+row2-row1+1)*column+j];
		row=newrow;
		delete[] datetemp;
	}
	//删除指定列,改变了源矩阵
	void remove_column(int columnindex)  //删除指定列
	{
		if (columnindex>=column || columnindex<0)
		{
			throw_logic_error("删除列范围越界");
			return;
		}
		Complex* datetemp = data;
		int newcolumn=column-1;
		data = new Complex[row*newcolumn];
		for (int i=0;i<row;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+1];
		}
		column=newcolumn;
		delete[] datetemp;
	}
	//删除指定列,改变了源矩阵
	void remove_column(int column1,int column2)  //删除多列,包含两个下标
	{
		if (column1>=column || column2>=column || column1<0||column2<0)
		{
			throw_logic_error("删除列范围越界");
			return;
		}
		Complex* datetemp = data;
		int newcolumn=column-column2+column1-1;
		data = new Complex[row*newcolumn];
		
		for (int i=0;i<row;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+column2-column1+1];
		}
		column=newcolumn;
		delete[] datetemp;
	}
	//删除指定的行和列
	void remove_row_column(int rowindex,int columnindex)
	{
		if (columnindex>=column || columnindex<0 || rowindex<0 || rowindex>=row)
		{
			throw_logic_error("删除行列范围越界");
			return;
		}
		Complex* datetemp = data;
		int newcolumn=column-1;
		int newrow=row-1;
		data = new Complex[newrow*newcolumn];
		for (int i=0;i<rowindex;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+1];
		}
		for (int i=rowindex;i<newrow;i++)
		{
			for (int j=0;j<columnindex;j++)
				this->data[i*newcolumn+j] = datetemp[(i+1)*column+j];
			for (int j=columnindex;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[(i+1)*column+j+1];
		}
		column=newcolumn;
		row =newrow;
		delete[] datetemp;
	}
	//删除多行和多列
	void remove_row_column(int row1,int row2,int column1,int column2)
	{
		if (column1>=column || column1<0 || row1<0 || row1>=row || column2>=column || column2<0 || row2<0 || row2>=row)
		{
			throw_logic_error("删除行列范围越界");
			return;
		}
		Complex* datetemp = data;
		int newcolumn=column-column2+column1-1;
		int newrow=row-row2+row1-1;
		data = new Complex[newrow*newcolumn];
		for (int i=0;i<row1;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[i*column+j+column2-column1+1];
		}
		for (int i=row1;i<newrow;i++)
		{
			for (int j=0;j<column1;j++)
				this->data[i*newcolumn+j] = datetemp[(i+row2-row1+1)*column+j];
			for (int j=column1;j<newcolumn;j++)
				this->data[i*newcolumn+j] = datetemp[(i+row2-row1+1)*column+j+column2-column1+1];
		}
		column=newcolumn;
		row =newrow;
		delete[] datetemp;
	}
	//替换局部矩阵,改变了源矩阵,
	void replace(CMatrix &a,int row1,int column1) 
	{
		int endrow=std::min(this->row,a.row+row1);
		int endcolumn=std::min(this->column,a.column+column1);
		for (int i=row1;i<endrow;i++)
			for (int j=column1;j<endcolumn;j++)
				this->data[i*column+j] = a((i-row1),j-column1);
	}



	//矩阵元素遍历操作,需要传入遍历函数,函数传入元素值,所属行,所属列,源矩阵,返回替换值。不改变源矩阵
	CMatrix map(function<Complex(Complex item,int row,int column,CMatrix& src)> fun){
		CMatrix p(this->row,this->column);
		for (int i=0;i<this->row;i++)
			for (int j=0;j<this->column;j++)
				p(i,j)=fun(this->data[i*column+j],i,j,*this);
		return p;	
	}

	//定义一个按行遍历函数(固定格式),每一行得到一个值,遍历结果为一个列向量。
	 //输入参数:前一个元素,当前元素,当前元素所属行,当前元素所属列,源矩阵
	//迭代从第二项开始,prev初始值为第一项,cur初始值为第二项。计算值自动传给下一函数的prev,返回最后一次迭代产生的值
	CMatrix map_row(function<Complex(Complex prev,Complex cur,int row,int column,CMatrix& src)> fun){
		CMatrix p(this->row,1);
		for (int i=0;i<this->row;i++)
		{
			Complex result = this->data[i*column];
			for (int j=1;j<this->column;j++)
				result = fun(result,this->data[i*column+j],i,j,*this);
			p(i) = result;
		}
		return p;
	}

	//定义一个按列遍历函数(固定格式),每一列得到一个值
	 //输入参数:前一个元素,当前元素,当前元素所属行,当前元素所属列,源矩阵
	//迭代从第二项开始,prev初始值为第一项,cur初始值为第二项。计算值自动传给下一函数的prev,返回最后一次迭代产生的值
	CMatrix map_column(function<Complex(Complex prev,Complex cur,int row,int column,CMatrix& src)> fun){
		CMatrix p(1,this->column);
		for (int j=0;j<this->column;j++)
		{
			Complex result = this->data[j];
			for (int i=1;i<this->row;i++)
				result = fun(result,this->data[i*column+j],i,j,*this);
			p(j) = result;
		}
		return p;
	}
	//点运算
	CMatrix dot(CMatrix& a,string operation)
	{
		if (row!=a.row || column!=a.column)
		{
			throw_logic_error("点运算矩阵不匹配");
			return NULL;
		}
		CMatrix p(row,column);
		if (operation=="+")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)+a(i,j);
		else if (operation=="-")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)-a(i,j);
		else if (operation=="*")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)*a(i,j);
		else if (operation=="/")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=(*this)(i,j)/a(i,j);
		else if (operation=="\\")
			for (int i=0;i<row;i++)
				for(int j=0;j<column;j++)
					p(i,j)=a(i,j)/(*this)(i,j);
		return p;
	}

	//查询是否是向量
	bool isVector()
	{
		if (row==1||column==1)
			return true;
		return false;
	}
	//实部矩阵
	Matrix real(){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++){
			p(i) = data[i].real();
		}
		return p;
	}
	//虚部矩阵
	Matrix imag(){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++){
			p(i) = data[i].imag();
		}
		return p;
	}
	//模值矩阵
	Matrix abs(){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
				p(i)=(double)std::sqrt((this->data[i].imag())*(this->data[i].imag())+(this->data[i].real())*(this->data[i].real()));
		return p;
	}
	//角度矩阵
	Matrix angle(){
		Matrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
				p(i)=(double)std::atan((this->data[i].imag())/(this->data[i].real()));
		return p;
	}
	//共轭矩阵
	CMatrix conj(){
		CMatrix p(row,column);
		for (int i=0;i<p.row*p.column;i++)
				p(i)=Complex(this->data[i].real(),-(this->data[i].imag()));
		return p;
	}
	//字符串形式表示
	string toString(){
		stringstream back;
		for (int i=0;i<row;i++)
		{
			for(int j=0;j<column;j++)
			{
				if(data[i*column+j].imag()<0)
					back<< fixed << setprecision(4)<<data[i*column+j].real()<<data[i*column+j].imag()<<"i";
				else
				{
					back<< fixed << setprecision(4)<<data[i*column+j].real()<<"+"<<data[i*column+j].imag()<<"i";
				}
				back<<"   ";
			}
			if(i!=row-1)
				back<<"\n";
		}
		return back.str();
	}
	//按行优先转化为series
	Complex* toSeries(){
		Complex* back = new Complex[row*column];
		for (int i=0;i<column*row;i++)
			back[i] = data[i];
		return back;
	}
	//转化为二位数组
	Complex** toArray(){
		Complex** back = new Complex*[column];
		int n=0;
		for (int i=0;i<row;i++){
			back[i]=new Complex[column];
			for(int j=0;j<column;j++)
				back[i][j] = data[i*column+j];
		}
		return back;
	}
	//按行优先转化为一维vector
	vector<Complex> toVector(){
		int t=0;
		vector<Complex> back(row*column);
		for (int i=0;i<row;i++)
			for (int j=0;j<column;j++)
				back[t++]=data[i*column+j];
		return back;
	}
	//按行优先转化为二维vector
	vector<vector<Complex>> toVector2(){
		int rowindex=0;
		int columnindex=0;
		vector<vector<Complex>> back(row);
		for (int i=0;i<row;i++)
		{
			columnindex=0;
			vector<Complex> newrow(column);
			for (int j=0;j<column;j++)
				newrow[columnindex++]=data[i*column+j];
			back[rowindex++]=newrow;
		}
		return back;
	}
	//析构函数,不能使用析构函数的原因在于很多函数局部类型返回需要保留data数据,不能使局部类型析构造成接收对象不可用。但是如果重写了赋值运算符,可以加上,因为在函数内,先赋值,在析构局部变量
	~CMatrix(){
		row=0;column=0;
		if(data !=nullptr){
			delete[] data;
			data=nullptr;
		}
	}

};



}


标签:return,Matrix,CMatrix,column,矩阵,int,data,row
From: https://blog.51cto.com/u_15858929/6170377

相关文章

  • WebMatrix3 启动报KeyNotFoundException错误解决方法
    我上网下载了WebMatrix3、iisexpress8安装以后运行WebMatrix3报错,日志如下:System.Collections.Generic.KeyNotFoundException:要使用的命令不在有效命令列表中。Thecommandbeingusedisnotinthelistofvalidcommands.应用程序:WebMatrix.exeFramework版本:v4.0.3......
  • 匹配矩阵
    a<-matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),nrow=3,ncol=5)c<-matrix(c(2,3,3,3,3,4,4,4,4,8,8,8),nrow=3,ncol=4)rownames(a)<-c("aa","cc","kk")rownames(c)<-c("dd","cc","ee")&......
  • Maze 第二十届浙大城市学院程序设计竞赛 (二分图,网络流(对于表格,矩阵是如何建边的))
    题目大意:给出一个01矩阵,给出q,p分别表示选一个点的权值,和选2个连在一起的点的权值问如何让权值更大 注意:在Dinic的时间复杂度对于二分图这种边权为1,时间复杂度为NsqrtN, 不是n^2m  思路:更具题目的条件限制,他的建边一定是2个矮在一起的因此更具(i......
  • 【SciPy】Sparse稀疏矩阵主要存储格式总结(转载)
    原文:【SciPy】Sparse稀疏矩阵主要存储格式总结在数据科学和深度学习等领域常会采用矩阵格式来存储数据,但当矩阵较为庞大且非零元素较少时,运算效率和存储有效率并不高。所以,通常我们采用Sparse稀疏矩阵的方式来存储矩阵,提高存储和运算效率。下面将对SciPy中七种常见的存储方式(COO/......
  • 1594. 矩阵的最大非负积
    题目描述给了一个矩阵grid,里面的数字有正有负问从左上角到右下角的最大乘积?f1-dp基本分析这里有正又负会有啥问题?可能最小的负*负数会产生最大的正数,所以需要维护两个值,最大的路径积和最小的路径积怎么进行转移?只能从左边或者上面转移来,需要对grid[i][j]的值按照正负分类讨......
  • 力扣---剑指 Offer 12. 矩阵中的路径
    给定一个 mxn二维字符网格 board和一个字符串单词 word。如果 word存在于网格中,返回true;否则,返回false。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。 例如,......
  • acwing 4405.统计子矩阵的和
    原题链接解题思路通过i和j来控制子矩阵的左右边界,通过s和t来控制子矩阵的上下边界,在子矩阵的和小于k时候,统计子矩阵的个数。代码#include<iostream>usingnamespacestd;constintN=550;inta[N][N];//i与j控制左右边界,st控制上下边界计算二维矩阵和intmai......
  • HJ70_矩阵乘法计算量估算_入门栈使用的典型题
    反思:这题咋一看不难,但是越做坑越多,按照一开始不完善的思路无法完全通过测试。参看高赞答案,代码行数特少。但是没考虑一个括号中有三个矩阵的情况。思路:1、判断哪两个矩阵开始相乘的条件:遇到“)”时,该字符前两个矩阵开始相乘。把相乘后矩阵行列数组压入栈栈中。该题默认不存在(A(......
  • HJ69_矩阵乘法_数组
    思路:三层循环实现矩阵相乘。importsysa=[]forlineinsys.stdin:  a.append(list(map(int,line.strip().split())))#print(a)matrix1=a[3:3+a[0][0]]matrix2=a[3+a[0][0]:]nw=[[0foriinrange(a[2][0])]foriinrange(a[0][0])]forminrange(a[0][0]): ......
  • 华为OD机试 和最大子矩阵
    本期题目:和最大子矩阵题目给定一个二维整数矩阵要在这个矩阵中选出一个子矩阵使得这个子矩阵内所有的数字和尽量大我们把这个子矩阵成为“和最大子矩阵”子矩阵的选取原则,是原矩阵中一段相互连续的矩形区域输入输入的第一行包含两个整数N,M (1<=N,M<=10) 表示一个......