首页 > 编程语言 >MapReduce Shuffle源码解读

MapReduce Shuffle源码解读

时间:2023-03-26 11:12:02浏览次数:54  
标签:Shuffle reporter MapReduce umbilical job 源码 new null final

MapReduce Shuffle源码解读

相信很多小伙伴都背过shuffle的八股文,但一直不是很理解shuffle的过程,这次我通过源码来解读下shuffle过程,加深对shuffle的理解,但是我自己还是个菜鸟,这篇博客也是参考了很多资料,如果有不对的地方,请指正。

shuffle是Map Task和 Reduce Task之间的一个阶段,本质上是一个跨节点跨进程间的数据传输,网上的资料也把MapReduce的过程细分为六个阶段:

  1. Collect 2. Spill 3.Merge 4.Copy 5.Merge 6. Sort

看过源码之后,这几个阶段划分的还是很有道理的,首先看看官网上对shuffle的描述图,有个印象

img

Map

首先,我们先来看看Map阶段的代码,先找到Map Task的入口(org/apache/hadoop/mapred/MapTask.java)的run方法,当map task启动时都会执行这个方法。

@Override
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
  throws IOException, ClassNotFoundException, InterruptedException {
  this.umbilical = umbilical;   // 一个taskAttempt的代理,后面比较多的地方使用

  if (isMapTask()) {
    // If there are no reducers then there won't be any sort. Hence the map 
    // phase will govern the entire attempt's progress.
    if (conf.getNumReduceTasks() == 0) {
      mapPhase = getProgress().addPhase("map", 1.0f);
    } else {
      // If there are reducers then the entire attempt's progress will be 
      // split between the map phase (67%) and the sort phase (33%).
      mapPhase = getProgress().addPhase("map", 0.667f);
      sortPhase  = getProgress().addPhase("sort", 0.333f);
    }
  }

  // 启动任务状态汇报器,其内部有周期性的汇报线程(状态汇报和心跳)
  TaskReporter reporter = startReporter(umbilical);

  boolean useNewApi = job.getUseNewMapper();
  initialize(job, getJobID(), reporter, useNewApi);  // 重要方法,可以认为初始化task启动的一切资源了

  // check if it is a cleanupJobTask
  if (jobCleanup) {
    runJobCleanupTask(umbilical, reporter);
    return;
  }
  if (jobSetup) {
    runJobSetupTask(umbilical, reporter);
    return;
  }
  if (taskCleanup) {
    runTaskCleanupTask(umbilical, reporter);
    return;
  }

  if (useNewApi) {
    runNewMapper(job, splitMetaInfo, umbilical, reporter); // 核心代码,点进去
  } else {
    runOldMapper(job, splitMetaInfo, umbilical, reporter);
  }
  done(umbilical, reporter);
}

这里umbilical比较难理解,我其实也没怎么搞懂,看名字是个协议,这里贴出它的注释

任务子进程用于联系其父进程的协议。父进程是一个守护进程,它轮询中央主进程以获取新的map或reduce Task,并将其作为子进程(Child)运行。孩子和父母之间的所有通信都是通过此协议进行的

看起来是个RPC,这个父进程我不是很清楚,我理解是在v1版本的话,这个可能是taskTracker,如果在v2版本(yarn)可能是ApplicationMaster,如果不对,请大神解答我的疑问。

进入runNewMapper方法

@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, ClassNotFoundException,
                           InterruptedException {
  // make a task context so we can get the classes  创建Task的上下文环境
  org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
    new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                getTaskID(),
                                                                reporter);
  // make a mapper  通过反射创建mapper
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
    (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
      ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
  // make the input format   通过反射创建inputFormat,来读取数据
  org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
    (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
      ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
  // rebuild the input split // 获取切片信息
  org.apache.hadoop.mapreduce.InputSplit split = null;
  split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
      splitIndex.getStartOffset());
  LOG.info("Processing split: " + split);

  org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
    new NewTrackingRecordReader<INKEY,INVALUE>   //通过反射创建RecordReader。InputFormat是通过RecordReader来读取数据,这个也是大学问,在job submit时很关键
      (split, inputFormat, reporter, taskContext);
  
  job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
  org.apache.hadoop.mapreduce.RecordWriter output = null;
  
  // get an output object
  if (job.getNumReduceTasks() == 0) { // 如果没有reduce任务,则直接写入磁盘
    output = 
      new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  } else { //  核心代码,创建collector收集器  ,点进去
    output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  }

  org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE> 
  mapContext = 
    new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), 
        input, output, 
        committer, 
        reporter, split);

  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context 
      mapperContext = 
        new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
            mapContext);

  try {
    input.initialize(split, mapperContext);
    mapper.run(mapperContext);  // 调用我们自己实现的mapper类
    mapPhase.complete();
    setPhase(TaskStatus.Phase.SORT);
    statusUpdate(umbilical);
    input.close();
    input = null;
    output.close(mapperContext);
    output = null;
  } finally {
    closeQuietly(input);
    closeQuietly(output, mapperContext);
  }
}

马上进入collect阶段了,点进 NewOutputCollector,看看如何创建Collector

  private class NewOutputCollector<K,V>
    extends org.apache.hadoop.mapreduce.RecordWriter<K,V> {
    private final MapOutputCollector<K,V> collector;
    private final org.apache.hadoop.mapreduce.Partitioner<K,V> partitioner;
    private final int partitions;

    @SuppressWarnings("unchecked")
    NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
                       JobConf job,
                       TaskUmbilicalProtocol umbilical,
                       TaskReporter reporter
                       ) throws IOException, ClassNotFoundException {
      collector = createSortingCollector(job, reporter);
      partitions = jobContext.getNumReduceTasks();  // partitions数等于reduce任务数
      if (partitions > 1) {
        partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
          ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
      } else {
        partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
          @Override
          public int getPartition(K key, V value, int numPartitions) {
            return partitions - 1;
          }
        };
      }
    }

    @Override
    public void write(K key, V value) throws IOException, InterruptedException {
      collector.collect(key, value, // 向对应分区的环形缓冲区写入(k,v)
                        partitioner.getPartition(key, value, partitions));
    }

    @Override
    public void close(TaskAttemptContext context
                      ) throws IOException,InterruptedException {
      try {
        collector.flush();//核心方法,将数据刷出去。
      } catch (ClassNotFoundException cnf) {
        throw new IOException("can't find class ", cnf);
      }
      collector.close();
    }
  }

点进 creareSortingCollector

@SuppressWarnings("unchecked")
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>  // collector是map 类型
        createSortingCollector(JobConf job, TaskReporter reporter)
  throws IOException, ClassNotFoundException {
  MapOutputCollector.Context context =
    new MapOutputCollector.Context(this, job, reporter);

  Class<?>[] collectorClasses = job.getClasses(  // 获取Map Collector的类型
    JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);  // 说到底还是MapOutputBuffer类型
  int remainingCollectors = collectorClasses.length;
  Exception lastException = null;
  for (Class clazz : collectorClasses) {
    try {
      if (!MapOutputCollector.class.isAssignableFrom(clazz)) {  // MapOutputCollector是不是clazz或者其父类
        throw new IOException("Invalid output collector class: " + clazz.getName() +
          " (does not implement MapOutputCollector)");
      }
      Class<? extends MapOutputCollector> subclazz =
        clazz.asSubclass(MapOutputCollector.class);
      LOG.debug("Trying map output collector class: " + subclazz.getName());
      MapOutputCollector<KEY, VALUE> collector =
        ReflectionUtils.newInstance(subclazz, job); //  创建collector
      collector.init(context);   // 初始化 点进去
      LOG.info("Map output collector class = " + collector.getClass().getName());
      return collector;
    } catch (Exception e) {
      String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
      if (--remainingCollectors > 0) {
        msg += " (" + remainingCollectors + " more collector(s) to try)";
      }
      lastException = e;
      LOG.warn(msg, e);
    }
  }
}

这个init方法十分的关键,不仅涉及了环形缓冲区,还涉及了Spill

public void init(MapOutputCollector.Context context    
                 // 这个方法中,主要就是对收集器对象进行一些初始化
                ) throws IOException, ClassNotFoundException {
  job = context.getJobConf();
  reporter = context.getReporter();
  mapTask = context.getMapTask();
  mapOutputFile = mapTask.getMapOutputFile();
  sortPhase = mapTask.getSortPhase();
  spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
  partitions = job.getNumReduceTasks();
  rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();

  //sanity checks
  final float spillper =
    job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);  // 设置环形缓冲区溢写比例为0.8
  final int sortmb = job.getInt(MRJobConfig.IO_SORT_MB,
      MRJobConfig.DEFAULT_IO_SORT_MB);  //  默认环形缓冲区大小为100M
  indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
                                     INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
  if (spillper > (float)1.0 || spillper <= (float)0.0) {
    throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
        "\": " + spillper);
  }
  if ((sortmb & 0x7FF) != sortmb) {
    throw new IOException(
        "Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
  }

  // 排序,默认使用的快排
  // 获取到排序对象,在数据由环形缓冲区溢写到磁盘中前
  // 并且排序是针对索引的,并非对数据进行排序。
  sorter = ReflectionUtils.newInstance(job.getClass(
               MRJobConfig.MAP_SORT_CLASS, QuickSort.class,
               IndexedSorter.class), job);
  // buffers and accounting
  // 对环形缓冲区初始化,大名鼎鼎的环形缓冲区本质上是个byte数组
  int maxMemUsage = sortmb << 20;  // 将MB转换为Bytes
  // 一对kv数据有四个元数据MATE,分别是valstart,keystart,partitions,vallen,都是int类型
  // METASIZE 就是4个int转换成byte就是4*4
  maxMemUsage -= maxMemUsage % METASIZE;  // 计算METE数据存储的大小
  kvbuffer = new byte[maxMemUsage]; // 元数据数组  以byte为单位
  bufvoid = kvbuffer.length;
  kvmeta = ByteBuffer.wrap(kvbuffer)
     .order(ByteOrder.nativeOrder())
     .asIntBuffer();  // 将byte单位的kvbuffer转换成int单位的kvmeta
  setEquator(0);
  bufstart = bufend = bufindex = equator;
  kvstart = kvend = kvindex;
  // kvmeta中存放元数据实体的最大个数
  maxRec = kvmeta.capacity() / NMETA;
  softLimit = (int)(kvbuffer.length * spillper); // buffer 溢写的阈值
  bufferRemaining = softLimit;
  LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
  LOG.info("soft limit at " + softLimit);
  LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
  LOG.info("kvstart = " + kvstart + "; length = " + maxRec);

  // k/v serialization
  comparator = job.getOutputKeyComparator();
  keyClass = (Class<K>)job.getMapOutputKeyClass();
  valClass = (Class<V>)job.getMapOutputValueClass();
  serializationFactory = new SerializationFactory(job);
  keySerializer = serializationFactory.getSerializer(keyClass);
  keySerializer.open(bb);  // 将key写入bb中 blockingbuffer
  valSerializer = serializationFactory.getSerializer(valClass);
  valSerializer.open(bb); // 将value写入bb中

  // output counters
  mapOutputByteCounter = reporter.getCounter(TaskCounter.MAP_OUTPUT_BYTES);
  mapOutputRecordCounter =
    reporter.getCounter(TaskCounter.MAP_OUTPUT_RECORDS);
  fileOutputByteCounter = reporter
      .getCounter(TaskCounter.MAP_OUTPUT_MATERIALIZED_BYTES);

  // compression  压缩器,减少shuffle数据量
  if (job.getCompressMapOutput()) {
    Class<? extends CompressionCodec> codecClass =
      job.getMapOutputCompressorClass(DefaultCodec.class);
    codec = ReflectionUtils.newInstance(codecClass, job);
  } else {
    codec = null;
  }

  // combiner
  // combiner  map端的reduce
  final Counters.Counter combineInputCounter =
    reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
  combinerRunner = CombinerRunner.create(job, getTaskID(), 
                                         combineInputCounter,
                                         reporter, null);
  if (combinerRunner != null) {
    final Counters.Counter combineOutputCounter =
      reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
    combineCollector= new CombineOutputCollector<K,V>(combineOutputCounter, reporter, job);
  } else {
    combineCollector = null;
  }
  // 溢写线程
  spillInProgress = false;
  minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
  spillThread.setDaemon(true); //  是个守护线程
  spillThread.setName("SpillThread"); //
  spillLock.lock();
  try {
    spillThread.start();  // 启动一个spill线程
    while (!spillThreadRunning) {
      spillDone.await();
    }
  } catch (InterruptedException e) {
    throw new IOException("Spill thread failed to initialize", e);
  } finally {
    spillLock.unlock();
  }
  if (sortSpillException != null) {
    throw new IOException("Spill thread failed to initialize",
        sortSpillException);
  }
}

从这个类,我们可以看到环形缓冲区的一些初始化过程,如大小为100M,开始溢写的比例是0.8,实际上,Collector是一个宏观的概念,本质上就是一个MapOutputBuffer对象。

后面还启动了Spill线程,不过如果是第一次进去会被阻塞这里我们先按下不表。

至此,一些map开始之前的工作已经准备好了,至于它是怎么工作的我们可以从我们写的mapper中write方法debug进去,发现其实还是NewOutputCollector中定义的write方法,点进去是MapOutputBuffer的collect方法

public synchronized void collect(K key, V value, final int partition
                                 ) throws IOException {
  reporter.progress();
  if (key.getClass() != keyClass) {
    throw new IOException("Type mismatch in key from map: expected "
                          + keyClass.getName() + ", received "
                          + key.getClass().getName());
  }
  if (value.getClass() != valClass) {
    throw new IOException("Type mismatch in value from map: expected "
                          + valClass.getName() + ", received "
                          + value.getClass().getName());
  }
  if (partition < 0 || partition >= partitions) {
    throw new IOException("Illegal partition for " + key + " (" +
        partition + ")");
  }
  checkSpillException();
  bufferRemaining -= METASIZE;  // 新数据collect时,先将元数据长度前去,之后判断
  if (bufferRemaining <= 0) { // 说明已经超过阈值了
    // start spill if the thread is not running and the soft limit has been
    // reached
    spillLock.lock();
    try {
      do {
        // 首次spill时,spillInProgress是false
        if (!spillInProgress) {
          final int kvbidx = 4 * kvindex; // 单位是byte
          final int kvbend = 4 * kvend;  // 单位是byte
          // serialized, unspilled bytes always lie between kvindex and
          // bufindex, crossing the equator. Note that any void space
          // created by a reset must be included in "used" bytes
          final int bUsed = distanceTo(kvbidx, bufindex);  // 剩下可以写入的空间大小
          final boolean bufsoftlimit = bUsed >= softLimit;  // true说明已经超过softLimit了
          if ((kvbend + METASIZE) % kvbuffer.length !=
              equator - (equator % METASIZE)) {
            // spill finished, reclaim space
            resetSpill();
            bufferRemaining = Math.min(
                distanceTo(bufindex, kvbidx) - 2 * METASIZE,
                softLimit - bUsed) - METASIZE;  // 这里是重新选择equator吧,但是计算方式不了解
            continue;
          } else if (bufsoftlimit && kvindex != kvend) {
            // spill records, if any collected; check latter, as it may
            // be possible for metadata alignment to hit spill pcnt
            startSpill();  //开始溢写,里面唤醒spill线程  
            final int avgRec = (int)
              (mapOutputByteCounter.getCounter() /
              mapOutputRecordCounter.getCounter());
            // leave at least half the split buffer for serialization data
            // ensure that kvindex >= bufindex
            final int distkvi = distanceTo(bufindex, kvbidx);
            final int newPos = (bufindex +
              Math.max(2 * METASIZE - 1,
                      Math.min(distkvi / 2,
                               distkvi / (METASIZE + avgRec) * METASIZE)))
              % kvbuffer.length;
            setEquator(newPos);
            bufmark = bufindex = newPos;
            final int serBound = 4 * kvend;
            // bytes remaining before the lock must be held and limits
            // checked is the minimum of three arcs: the metadata space, the
            // serialization space, and the soft limit
            bufferRemaining = Math.min(
                // metadata max
                distanceTo(bufend, newPos),
                Math.min(
                  // serialization max
                  distanceTo(newPos, serBound),
                  // soft limit
                  softLimit)) - 2 * METASIZE;
          }
        }
      } while (false);   // 这是什么写法?????
    } finally {
      spillLock.unlock();
    }
  }
  // 直接写入buffer,不涉及spill
  try {
    // serialize key bytes into buffer
    int keystart = bufindex;
    keySerializer.serialize(key);
    // key所占空间被bufvoid分隔,则移动key,
    // 将其值放在连续的空间中便于sort时key的对比
    if (bufindex < keystart) {
      // wrapped the key; must make contiguous
      bb.shiftBufferedKey();
      keystart = 0;
    }
    // serialize value bytes into buffer
    final int valstart = bufindex;
    valSerializer.serialize(value);
    // It's possible for records to have zero length, i.e. the serializer
    // will perform no writes. To ensure that the boundary conditions are
    // checked and that the kvindex invariant is maintained, perform a
    // zero-length write into the buffer. The logic monitoring this could be
    // moved into collect, but this is cleaner and inexpensive. For now, it
    // is acceptable.
    bb.write(b0, 0, 0);

    // the record must be marked after the preceding write, as the metadata
    // for this record are not yet written
    int valend = bb.markRecord();

    mapOutputRecordCounter.increment(1);
    mapOutputByteCounter.increment(
        distanceTo(keystart, valend, bufvoid)); //计数器+1

    // write accounting info
    kvmeta.put(kvindex + PARTITION, 
              );
    kvmeta.put(kvindex + KEYSTART, keystart);
    kvmeta.put(kvindex + VALSTART, valstart);
    kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
    // advance kvindex
    kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();
  } catch (MapBufferTooSmallException e) {
    LOG.info("Record too large for in-memory buffer: " + e.getMessage());
    spillSingleRecord(key, value, partition);  // 长record就直接写入磁盘
    mapOutputRecordCounter.increment(1);
    return;
  }
}

这里首先最重要的方法就是第46行的startSpill()方法,这里点进去会发现一个spillReady.signal(),这就是唤醒之前因spillReady.await()方法阻塞的spill线程,这里的spillReady就是可重入锁,这里spill开始正式工作,这里涉及了环形缓冲区如何写和如何读,会比较抽象,我之后再写一篇关于环形缓冲区的文章。

这里代码就是Collect,本质上就是map端将输出的(k,v)数据和它的元数据写入MapOutputBuffer中。

此外,这个代码里也有唤醒spill线程的代码,找到SpillThread的run方法,很明显里面有个很重要的方法sortAndSpill

private void sortAndSpill() throws IOException, ClassNotFoundException,
                                   InterruptedException {
  //approximate the length of the output file to be the length of the
  //buffer + header lengths for the partitions
  final long size = distanceTo(bufstart, bufend, bufvoid) +
              partitions * APPROX_HEADER_LENGTH;  // 写出长度
  FSDataOutputStream out = null;
  FSDataOutputStream partitionOut = null;
  try {
    // create spill file
    final SpillRecord spillRec = new SpillRecord(partitions);
    final Path filename =
        mapOutputFile.getSpillFileForWrite(numSpills, size);// 默认是output/spillx.out
    out = rfs.create(filename);// 创建分区文件

    final int mstart = kvend / NMETA;
    final int mend = 1 + // kvend is a valid record
      (kvstart >= kvend
      ? kvstart
      : kvmeta.capacity() + kvstart) / NMETA;
    // 对元数据进行排序,先按照partition进行排序,再按照key值进行排序
    // 二次排序,排的是元数据部分
    sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
    int spindex = mstart;
    final IndexRecord rec = new IndexRecord();
    final InMemValBytes value = new InMemValBytes();
    for (int i = 0; i < partitions; ++i) {//循环分区
      // 溢写时的临时文件 类型是IFile
      IFile.Writer<K, V> writer = null;
      try {
        long segmentStart = out.getPos();
        partitionOut = CryptoUtils.wrapIfNecessary(job, out, false);
        writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,
                                  spilledRecordsCounter);
        if (combinerRunner == null) {
          // spill directly
          DataInputBuffer key = new DataInputBuffer();
          // 写入相同的partition数据
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
            final int kvoff = offsetFor(spindex % maxRec);
            int keystart = kvmeta.get(kvoff + KEYSTART);
            int valstart = kvmeta.get(kvoff + VALSTART);
            key.reset(kvbuffer, keystart, valstart - keystart);
            getVBytesForOffset(kvoff, value);
            writer.append(key, value);
            ++spindex;
          }
        } else {    // 进行combiner,避免小文件问题
          int spstart = spindex;
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec)
                        + PARTITION) == i) {
            ++spindex;
          }
          // Note: we would like to avoid the combiner if we've fewer
          // than some threshold of records for a partition
          if (spstart != spindex) {
            combineCollector.setWriter(writer);
            RawKeyValueIterator kvIter =
              new MRResultIterator(spstart, spindex);
            combinerRunner.combine(kvIter, combineCollector);
          }
        }

        // close the writer
        writer.close();  ///  将文件写入本地磁盘中,不是HDFS上
        if (partitionOut != out) {
          partitionOut.close();
          partitionOut = null;
        }

        // record offsets
        // 记录当前partition i的信息写入索文件rec中
        rec.startOffset = segmentStart;
        rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
        rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
        //spillRec中存放了spill中partition的信息
        spillRec.putIndex(rec, i);

        writer = null;
      } finally {
        if (null != writer) writer.close();
      }
    }

    if (totalIndexCacheMemory >= indexCacheMemoryLimit) {
      // create spill index file
      Path indexFilename =
          mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
              * MAP_OUTPUT_INDEX_RECORD_LENGTH);
      spillRec.writeToFile(indexFilename, job);  // 将内存中的index文件写入磁盘
    } else {
      indexCacheList.add(spillRec);
      totalIndexCacheMemory +=
        spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
    }
    LOG.info("Finished spill " + numSpills);
    ++numSpills;
  } finally {
    if (out != null) out.close();
    if (partitionOut != null) {
      partitionOut.close();
    }
  }
}

很明显,spill有两个临时文件生成,一个是(k,v)文件,它保存在默认路径是output/spill{x}.out文件中,注意,这段代码里并没有明显的将(k,v)文件写入磁盘的代码,这些代码在writer.close()中实现。而另一个明显写入磁盘的是spillRec.writeToFile(indexFilename, job),这个存放的每个partition的index。

在SpillThread在辛辛苦苦进行sortAndSpill工作时,map Task 也不断地产生新(k,v)写入MapOutputBuffer中,环形缓冲区的读线程和写线程同时工作!!怎么避免冲突呢?答案是反向写。

红色箭头是写(k,v)数据,蓝色箭头是写元数据,紫色是预留的百分之20的空间不能写,绿色是已经写入的数据部分,正在被spill线程读取操作。

至此,spillsort阶段算是大功告成,那么还有个疑问,如果MapOutPutBuffer还有部分数据,但这部分数据并没有达到spill的标准,怎么办呢?还是回到NewOutputCollector部分中close方法,里面有MapOutputBuffer的flush方法会解决这个问题。

最后就是Map Task中Shuffle过程的最后一个阶段Merge,这部分有点多就不贴代码了,感兴趣的同学可以查看MapOutputBuffer中mergeParts方法,这个方法在上面的flush方法里调用,该作用是合并spill阶段产生出来的out文件和index文件。

Merge过程目的很简单,但是过程确实很复杂。首先,Merge过程会扫描目录获取out文件的地址,存放一个数组中,同时也会获得index文件,存放到另一个数组中。好奇的同学可能再想既然又要读入到内存中,当初为啥要刷进磁盘里呢,这不是闲着没事干嘛,确实,这是MapReduce的缺陷,太过于批处理了,磁盘IO也限制了它的其他可能性,比如机器学习需要反复迭代,MapReduce就做不了这个,但是这一步确实很有必要的,因为早期内存很贵,不是每个人都是土豪的,考虑到OOM的风险,把所有的(K,V)数据和index数据刷进磁盘是非常有必要的,但是后面又可以全读入内存,那是因为缓存缓冲区这个大东西已经不再使用,内存就富裕起来了。

同时,Merge过程还涉及到归并算法,这个并不是简单的归并过程,而是一个很复杂的过程,因为考虑到一个partition并不只存在一种key,所以源码里有着相当复杂的过程同时注释也很迷惑人,注释里有优先队列和Heap的字样,看代码的时候可能以为采用了堆排序,有兴趣的同学可以看看,并不是太重要(ps我也看得一知半解)。

Reduce

Reduce部分我就长话短说,只看重点了。

同样,第一步就是查看 Reduce Task的run方法,这是启动redduce逻辑的自动过程

 public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
   throws IOException, InterruptedException, ClassNotFoundException {
   job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

   if (isMapOrReduce()) { // reduce的三个阶段
     copyPhase = getProgress().addPhase("copy");
     sortPhase  = getProgress().addPhase("sort");
     reducePhase = getProgress().addPhase("reduce");
   }
   // start thread that will handle communication with parent
   // 启动任务状态汇报器,其内部有周期性的汇报线程(状态汇报和心跳)
   TaskReporter reporter = startReporter(umbilical);
   
   boolean useNewApi = job.getUseNewReducer();
   initialize(job, getJobID(), reporter, useNewApi);//核心代码,初始化任务

   // check if it is a cleanupJobTask
   if (jobCleanup) {
     runJobCleanupTask(umbilical, reporter);
     return;
   }
   if (jobSetup) {
     runJobSetupTask(umbilical, reporter);
     return;
   }
   if (taskCleanup) {
     runTaskCleanupTask(umbilical, reporter);
     return;
   }
   
   // Initialize the codec
   codec = initCodec();
   RawKeyValueIterator rIter = null;
   ShuffleConsumerPlugin shuffleConsumerPlugin = null;
   
   Class combinerClass = conf.getCombinerClass();
   CombineOutputCollector combineCollector = 
     (null != combinerClass) ? 
    new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;

   Class<? extends ShuffleConsumerPlugin> clazz =
         job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
// 设置shuffle插件
   shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
   LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

   ShuffleConsumerPlugin.Context shuffleContext = 
     new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical, 
                 super.lDirAlloc, reporter, codec, 
                 combinerClass, combineCollector, 
                 spilledRecordsCounter, reduceCombineInputCounter,
                 shuffledMapsCounter,
                 reduceShuffleBytes, failedShuffleCounter,
                 mergedMapOutputsCounter,
                 taskStatus, copyPhase, sortPhase, this,
                 mapOutputFile, localMapFiles);
   shuffleConsumerPlugin.init(shuffleContext);
   // 执行shuffle过程中的远程数据拉取,在拉取的过程中
   // 内部 启动 map-completion event fetch线程 获取map端完成的event信息
   // 在开启默认5个的fetch 线程 拉取数据,里面核心函数就是一直点进去是doShuffle,有两种一种是in-memory另一种就是on-disk
   // 超出shuffle内存就merge到disk
   // shuffle插件内部有个mergeMangager 会在合适的时候就是快超过shuffle内存缓存的时候,启动merge线程

   // 这个表面是一次网络IO,本质上是一个RPC,通过umbilical代理获取已经完成的MapTask任务的taskAttempt的ID,存入schedule中,为后面shuffle做准备

   rIter = shuffleConsumerPlugin.run();

   // free up the data structures
   // 一个sort set,是TreeSet数据结构·
   mapOutputFilesOnDisk.clear();
   
   sortPhase.complete();                         // sort is complete
   setPhase(TaskStatus.Phase.REDUCE); 
   statusUpdate(umbilical);
   Class keyClass = job.getMapOutputKeyClass();
   Class valueClass = job.getMapOutputValueClass();
   RawComparator comparator = job.getOutputValueGroupingComparator();

   if (useNewApi) {
     runNewReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass); // 执行reduce操作,(用户定义的逻辑)
   } else {
     runOldReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass);
   }

   shuffleConsumerPlugin.close();
   done(umbilical, reporter);
 }

Reduce Task的重点比较清晰,就是57行的初始化shuffleConsumerPlugin这个Shuffle插件,以及66行运行这个插件,让他拉取数据。

初始化shuffle插件过程中,有两个组件一个是schedule调度器,另一个就是MergeManager,这个MergeManger有大用处。

接下来查看run方法

public RawKeyValueIterator run() throws IOException, InterruptedException {
  // Scale the maximum events we fetch per RPC call to mitigate OOM issues
  // on the ApplicationMaster when a thundering herd of reducers fetch events
  // TODO: This should not be necessary after HADOOP-8942
  int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH,
      MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());
  int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

  // Start the map-completion events fetcher thread
  // 启动 一个 event fetcher线程 获取map端完成的event信息
  final EventFetcher<K,V> eventFetcher = 
    new EventFetcher<K,V>(reduceId, umbilical, scheduler, this,
        maxEventsToFetch);
  eventFetcher.start();
  
  // Start the map-output fetcher threads  启动fetch线程
  // fetch 线程 远程从map端拉取对应partition的数据
  boolean isLocal = localMapFiles != null;
  final int numFetchers = isLocal ? 1 :
    jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
  Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
  if (isLocal) {
    fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
        merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
        localMapFiles);
    fetchers[0].start();
  } else {
    for (int i=0; i < numFetchers; ++i) {
      fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger, 
                                     reporter, metrics, this, 
                                     reduceTask.getShuffleSecret());
      fetchers[i].start();
    }
  }
  
  // Wait for shuffle to complete successfully
  while (!scheduler.waitUntilDone(PROGRESS_FREQUENCY)) {
    reporter.progress();
    
    synchronized (this) {
      if (throwable != null) {
        throw new ShuffleError("error in shuffle in " + throwingThreadName,
                               throwable);
      }
    }
  }

  // Stop the event-fetcher thread
  eventFetcher.shutDown();
  
  // Stop the map-output fetcher threads
  for (Fetcher<K,V> fetcher : fetchers) {
    fetcher.shutDown();
  }
  
  // stop the scheduler
  scheduler.close();

  copyPhase.complete(); // copy is already complete
  taskStatus.setPhase(TaskStatus.Phase.SORT);
  reduceTask.statusUpdate(umbilical);

  // Finish the on-going merges...
  RawKeyValueIterator kvIter = null;
  try {
    kvIter = merger.close();
  } catch (Throwable e) {
    throw new ShuffleError("Error while doing final merge " , e);
  }

  // Sanity check
  synchronized (this) {
    if (throwable != null) {
      throw new ShuffleError("error in shuffle in " + throwingThreadName,
                             throwable);
    }
  }
  
  return kvIter;
}

重点就是两线程,一种是Event fetch,另一种是fetch线程

首先,event fetch线程的作用是获取TaskAttempt的ID等信息,存入schedule中,方面以后Shuffle尤其是sort时使用,本质上这是个RPC,注意看event fetch初始化时的参数里有个umbilical代理对象。

而fetch线程的工作原理是通过HTTP向各个Map任务拖取它所需要的数据(至于HTTP和RPC的区别有兴趣的同学可以查查),里面最核心的方法是doShuffle(一直点进去才能找到这个),在Copy的同时还会MergeSort。doShuffle它有两个实现,一个是In-memory,另一个是On-disk有两个实现(同样的,Merge也分为这两种)。是基于考虑到拉取相同的key值可能有很大的数据量,那么有必要写入磁盘中了,但为了减少这种情况,在达到缓存区(默认是64K)阈值的时候会将数据merge(如果太大的话就在磁盘中merge),Merge的工作就是交给Shuffle插件的MergeManager管理。

所以,copy和Merge和Sort是重叠过程的。

至此,Shuffle部分的源码基本讲解完成。

参考资料

  1. MapReduce ReduceTask源码解析

  2. MapReduce中的shuffle详解

  3. 环形缓冲区

标签:Shuffle,reporter,MapReduce,umbilical,job,源码,new,null,final
From: https://www.cnblogs.com/spark-cc/p/17256123.html

相关文章

  • 跨境外贸可翻译客服系统源码实现,访客消息可翻译为中文,客服消息可以转为外语发送
    要实现跨境外贸的可翻译客服系统,我们需要一个能够将多种语言互相转换的翻译API。常用的翻译API包括GoogleTranslateAPI、MicrosoftTranslatorAPI等。在本示例中,我......
  • Mybatis源码(十):Mybatis插件机制
    1、Mybatis插件支持拦截的对象MyBatis允许使用插件来拦截的方法调用,可在映射语句执行流程中进行拦截调用。Mybatis插件支持拦截的对象:1、Executor:执行器Execu......
  • modbus CRC校验源码转载
     c#CRC校验 用于学习记录原文载自:https://www.cnblogs.com/ayxj/p/11481969.html用C#实现的几种常用数据校验方法整理(CRC校验;LRC校验;BCC校验;累加和校验)   ......
  • Qt源码阅读(一) 信号槽的连接与调用
    信号槽连接目录信号槽连接1.信号的连接2槽的调用信号槽的连接,其实内部本质还是一个回调函数,主要是维护了信号发送Object的元对象里一个连接的列表。调用connect函数时,......
  • 若依框架----源码分析(@RateLimiter)
    若依作为最近非常火的脚手架,分析它的源码,不仅可以更好的使用它,在出错时及时定位,也可以在需要个性化功能时轻车熟路的修改它以满足我们自己的需求,同时也可以学习人家解决问题......
  • 若依框架----源码分析(@Log)
    若依作为最近非常火的脚手架,分析它的源码,不仅可以更好的使用它,在出错时及时定位,也可以在需要个性化功能时轻车熟路的修改它以满足我们自己的需求,同时也可以学习人家解决问题......
  • DETR源码学习(一)之网络模型构建
    这篇文章主要为记录DETR模型的构建过程首先明确DETR模型的搭建顺序:首先是backbone的搭建,使用的是resnet50,随后是Transformer模型的构建,包含编码器的构建与解码器的构建,完......
  • Promise源码和静态方法
    Promise源码index.html文件进行测试,Promise.js文件写源码    Promise是一个类,我们使用class进行Promise的声明jsclassPromise{}html<scriptsrc="./Pro......
  • Mybtais源码(九):增删改执行流程
    在Mybatis源码(七):SQL执行流程中已提到,根据不同的sqlCommandType执行不同类型的SQL,下面来看看调用Mapper接口的新增、修改、删除,Mybatis中做了哪些处理。1、新增1/......
  • requireJS 源码(二) data-main 的加载实现
    requireJS源码(二)data-main的加载实现(一)requireJs的整体结构:requireJS源码前192行,是一些变量的声明,工具函数的实现以及对三个全局变量(requirejs,require,def......