首页 > 编程语言 >DJBX33A哈希(Hash)算法

DJBX33A哈希(Hash)算法

时间:2023-03-20 11:34:17浏览次数:56  
标签:hash 哈希 33 len DJBX33A key Hash const

 

1 DJBX33A算法原理

DJBX33A (Daniel J. Bernstein, Times 33 with Addition)哈希算法速度非常快,并且分类非常好(冲突小,分布均匀),是比较理想的字符串哈希算法,目前被广泛应用在多个软件项目中,例如:PHP,Python,Apache,NginxBerkeleyDB等。
DJBX33A算法简单实现:

unsigned long djbx33a_hash(const char *str, size_t len)
{
    unsigned long hash = 0U;
    for(size_t i = 0;i < len; ++i) {
        hash = hash * 33 + (unsigned long)str[i];
        /* or, hash = ((hash << 5) + hash) + (unsigned long)str[i]; 
         * where, hash * 33 = ((hash << 5) + hash) 
         */
    }

    return hash;
} 

 

 

2 DJBX33A算法典型实现

2.1 PHP(zend_string.h)

static zend_always_inline zend_ulong zend_inline_hash_func(const char *str, size_t len)
{
    zend_ulong hash = Z_UL(5381);

    /* variant with the hash unrolled eight times */
    for (; len >= 8; len -= 8) {
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
        hash = ((hash << 5) + hash) + *str++;
    }
    switch (len) {
        case 7: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 6: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 5: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 4: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 3: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 2: hash = ((hash << 5) + hash) + *str++; /* fallthrough... */
        case 1: hash = ((hash << 5) + hash) + *str++; break;
        case 0: break;
EMPTY_SWITCH_DEFAULT_CASE()
    }

    /* Hash value can't be zero, so we always set the high bit */
#if SIZEOF_ZEND_LONG == 8
    return hash | Z_UL(0x8000000000000000);
#elif SIZEOF_ZEND_LONG == 4
    return hash | Z_UL(0x80000000);
#else
# error "Unknown SIZEOF_ZEND_LONG"
#endif
}

/* Associate type micro defination in other file*/
typedef uint32_t zend_ulong;
#define Z_UL(i) UINT32_C(i)
#define UINT32_C(c) c ## U

1

 

其中,DJBX33A算法哈希(Hash)初始值为zend_ulong hash = Z_UL(5381),该函数注释如下:

/*
 * DJBX33A (Daniel J. Bernstein, Times 33 with Addition)
 *
 * This is Daniel J. Bernstein's popular `times 33' hash function as
 * posted by him years ago on comp.lang.c. It basically uses a function
 * like ``hash(i) = hash(i-1) * 33 + str[i]''. This is one of the best
 * known hash functions for strings. Because it is both computed very
 * fast and distributes very well.
 *
 * The magic of number 33, i.e. why it works better than many other
 * constants, prime or not, has never been adequately explained by
 * anyone. So I try an explanation: if one experimentally tests all
 * multipliers between 1 and 256 (as RSE did now) one detects that even
 * numbers are not useable at all. The remaining 128 odd numbers
 * (except for the number 1) work more or less all equally well. They
 * all distribute in an acceptable way and this way fill a hash table
 * with an average percent of approx. 86%.
 *
 * If one compares the Chi^2 values of the variants, the number 33 not
 * even has the best value. But the number 33 and a few other equally
 * good numbers like 17, 31, 63, 127 and 129 have nevertheless a great
 * advantage to the remaining numbers in the large set of possible
 * multipliers: their multiply operation can be replaced by a faster
 * operation based on just one shift plus either a single addition
 * or subtraction operation. And because a hash function has to both
 * distribute good _and_ has to be very fast to compute, those few
 * numbers should be preferred and seems to be the reason why Daniel J.
 * Bernstein also preferred it.
 *
 *
 *                  -- Ralf S. Engelschall <rse@engelschall.com>
 */
static zend_always_inline zend_ulong zend_inline_hash_func(const char *str, size_t len)
{
    ...
}

 

 

2.2 Apache(apr_hash.c)

static unsigned int hashfunc_default(const char *char_key, apr_ssize_t *klen,
                                     unsigned int hash)
{
    const unsigned char *key = (const unsigned char *)char_key;
    const unsigned char *p;
    apr_ssize_t i;

    /*
     * This is the popular `times 33' hash algorithm which is used by
     * perl and also appears in Berkeley DB. This is one of the best
     * known hash functions for strings because it is both computed
     * very fast and distributes very well.
     *
     * The originator may be Dan Bernstein but the code in Berkeley DB
     * cites Chris Torek as the source. The best citation I have found
     * is "Chris Torek, Hash function for text in C, Usenet message
     * <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich
     * Salz's USENIX 1992 paper about INN which can be found at
     * <http://citeseer.nj.nec.com/salz92internetnews.html>.
     *
     * The magic of number 33, i.e. why it works better than many other
     * constants, prime or not, has never been adequately explained by
     * anyone. So I try an explanation: if one experimentally tests all
     * multipliers between 1 and 256 (as I did while writing a low-level
     * data structure library some time ago) one detects that even
     * numbers are not useable at all. The remaining 128 odd numbers
     * (except for the number 1) work more or less all equally well.
     * They all distribute in an acceptable way and this way fill a hash
     * table with an average percent of approx. 86%.
     *
     * If one compares the chi^2 values of the variants (see
     * Bob Jenkins ``Hashing Frequently Asked Questions'' at
     * http://burtleburtle.net/bob/hash/hashfaq.html for a description
     * of chi^2), the number 33 not even has the best value. But the
     * number 33 and a few other equally good numbers like 17, 31, 63,
     * 127 and 129 have nevertheless a great advantage to the remaining
     * numbers in the large set of possible multipliers: their multiply
     * operation can be replaced by a faster operation based on just one
     * shift plus either a single addition or subtraction operation. And
     * because a hash function has to both distribute good _and_ has to
     * be very fast to compute, those few numbers should be preferred.
     *
     *                  -- Ralf S. Engelschall <rse@engelschall.com>
     */

    if (*klen == APR_HASH_KEY_STRING) {
        for (p = key; *p; p++) {
            hash = hash * 33 + *p;
        }
        *klen = p - key;
    }
    else {
        for (p = key, i = *klen; i; i--, p++) {
            hash = hash * 33 + *p;
        }
    }

    return hash;
}

hash = hashfunc_default(key, &klen, ht->seed);

1

 

2.3 BerkeleyDB(src\hash\hash_func.c)

/*  DJBX33A algorithm
 * __ham_func4 --
 *  Chris Torek's hash function.  Although this function performs only
 *  slightly worse than __ham_func5 on strings, it performs horribly on
 *  numbers.
 * 
 * PUBLIC: u_int32_t __ham_func4 __P((DB *, const void *, u_int32_t));
 */
u_int32_t
__ham_func4(dbp, key, len)
    DB *dbp;
    const void *key;
    u_int32_t len;
{
    const u_int8_t *k;
    u_int32_t h, loop;

    if (dbp != NULL)
        COMPQUIET(dbp, NULL);

    if (len == 0)
        return (0);

#define HASH4a  h = (h << 5) - h + *k++;
#define HASH4b  h = (h << 5) + h + *k++;
#define HASH4   HASH4b
    h = 0;
    k = key;

    loop = (len + 8 - 1) >> 3;
    switch (len & (8 - 1)) {
    case 0:
        do {
            HASH4;
    case 7:
            HASH4;
    case 6:
            HASH4;
    case 5:
            HASH4;
    case 4:
            HASH4;
    case 3:
            HASH4;
    case 2:
            HASH4;
    case 1:
            HASH4;
        } while (--loop);
    }
    return (h);
}

 

 

2.4 Python(pyhash.c)

Py_hash_t
_Py_HashBytes(const void *src, Py_ssize_t len)
{
    Py_hash_t x;
    /*
      We make the hash of the empty string be 0, rather than using
      (prefix ^ suffix), since this slightly obfuscates the hash secret
    */
    if (len == 0) {
        return 0;
    }

#ifdef Py_HASH_STATS
    hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++;
#endif

#if Py_HASH_CUTOFF > 0
    if (len < Py_HASH_CUTOFF) {
        /* Optimize hashing of very small strings with inline DJBX33A. */
        Py_uhash_t hash;
        const unsigned char *p = src;
        hash = 5381; /* DJBX33A starts with 5381 */

        switch(len) {
            /* ((hash << 5) + hash) + *p == hash * 33 + *p */
            case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
            case 1: hash = ((hash << 5) + hash) + *p++; break;
            default:
                Py_UNREACHABLE();
        }
        hash ^= len;
        hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix;
        x = (Py_hash_t)hash;
    }
    else
#endif /* Py_HASH_CUTOFF */
        x = PyHash_Func.hash(src, len);

    if (x == -1)
        return -2;
    return x;
}

typedef Py_ssize_t      Py_hash_t;
typedef ssize_t         Py_ssize_t;

#ifdef MS_WIN64
typedef __int64 ssize_t;
#else
typedef _W64 int ssize_t;
#endif

#define Py_UNREACHABLE() abort()

typedef struct {
    Py_hash_t (*const hash)(const void *, Py_ssize_t);
    const char *name;
    const int hash_bits;
    const int seed_bits;
} PyHash_FuncDef;

 

 

3 DJBX33A算法相似实现

Tokyo Cabinet,Nginx等软件项目通过改变每次相乘的倍数(31,37)获得与DJBX33A相似哈希函数。

3.1 Tokyo Cabinet内存数据库

/* tctdb.c */
/* Get the hash value of a record.
   `pkbuf' specifies the pointer to the region of the primary key.
   `pksiz' specifies the size of the region of the primary key.
   The return value is the hash value. */
static uint16_t tctdbidxhash(const char *pkbuf, int pksiz){
    assert(pkbuf && pksiz && pksiz >= 0);
    uint32_t hash = 19780211;
    while(pksiz--) {
        hash = hash * 37 + *(uint8_t *)pkbuf++;
    }
    return hash;
}

 

 

/* tchdb.c */
/* Get the bucket index of a record.
   `hdb' specifies the hash database object.
   `kbuf' specifies the pointer to the region of the key.
   `ksiz' specifies the size of the region of the key.
   `hp' specifies the pointer to the variable into which the second hash value is assigned.
   The return value is the bucket index. */
static uint64_t tchdbbidx(TCHDB *hdb, const char *kbuf, int ksiz, uint8_t *hp){
    assert(hdb && kbuf && ksiz >= 0 && hp);
    uint64_t idx = 19780211;
    uint32_t hash = 751;
    const char *rp = kbuf + ksiz;
    while(ksiz--) {
        idx = idx * 37 + *(uint8_t *)kbuf++;
        hash = (hash * 31) ^ *(uint8_t *)--rp;
    }
    *hp = hash;
    return idx % hdb->bnum;
}

 

 

3.2 Nginx服务器

/* ngx_hash.c */
ngx_uint_t
ngx_hash_key(u_char *data, size_t len)
{
    ngx_uint_t  i, key;

    key = 0;

    for (i = 0; i < len; i++) {
        key = ngx_hash(key, data[i]);
    }

    return key;
}

/* ngx_hash.h */
#define ngx_hash(key, c)   ((ngx_uint_t) key * 31 + c)

7


4 参考链接

[1] PHP中的Hash算法
[2] time33 哈希函数,又叫 DJBX33A,Bernstein’s hash

标签:hash,哈希,33,len,DJBX33A,key,Hash,const
From: https://www.cnblogs.com/luluping/p/17235738.html

相关文章

  • hashmap get、put时间复杂度
    在JDK8之前用单链表HashMap作为一个桶来储存存在哈希碰撞的元素。无论是get还是put方法,步骤都可以分为第一步找桶(找桶时间都为O(1),可以忽略),第二步在桶内进行操作(查找或......
  • rehash
    当桶个数大于阈值,会进行扩容,容量扩大到2倍。//离100最近的2次幂是128,默认负载因子是0.75,所以扩容阈值是128*0.75=96,以下put发生rehashHashMaphashMap=newHashMap(10......
  • JUC源码学习笔记8——ConcurrentHashMap源码分析1 如何实现低粒度锁的插入,如何实现统
    源码基于jdk1.8这一片主要讲述ConcurrentHashMap如何实现低粒度锁的插入,如何实现统计元素个数,如何实现并发扩容迁移系列文章目录和关于我一丶ConcurrentHashMap概述......
  • ConcurrentHashMap 的实现方式?
    ConcurrentHashMap的实现方式和Hashtable不同,不采用独占锁的形式,更高效,其中在jdk1.7和jdk1.8中实现的方式也略有不同。Jdk1.7中采用分段锁和HashEntry使锁更加......
  • HashMap正确遍历方式,千万不要再forforfor啦!!!
    for(inti=0;i<map.size();i++){if(map.get(i)/n>=0.01){num++;}}上述代码报空指针异常。为什么?循环......
  • re,hashlib模块
    re模块importre.findall("正则",data)贪婪匹配:.*?hashlib模块importhashlibmd5=hashlib.md5()#选择加密方式md5.update(data)#data加密方式printmd5.hexd......
  • 浅谈 equals() 和 hashCode()
    equals()和hashCode()在Object类中定义hashCode():用于计算对象哈希值。equals():用于比较对象是否相等。默认实现Object定义的方法默认实现:均基于对象引用......
  • 谈谈ConcurrentHashMap是如何保证线程安全的?
    jdk1.7中是采用Segment+HashEntry+ReentrantLock的方式进行实现的,而1.8中放弃了Segment臃肿的设计,取而代之的是采用Node+CAS+Synchronized来保证并发安全进行实现......
  • HashSet
    HashSet类定义命名空间:System.Collections.Generic程序集:System.Collections.dll类型参数T(哈希集中的元素类型)注释类HashSet提供高性能集操作。集是不包含......
  • MySQL(八)哈希索引、AVL树、B树与B+树的比较
    Hash索引简介​ 这部分略了Hash索引效率高,为什么还要设计索引结构为树形结构?Hash索引仅能满足=、<>和IN查询,如果进行范围查询,哈希的索引会退化成O(n);而树型的有序特......