首页 > 编程语言 >Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据

Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据

时间:2023-03-10 13:44:06浏览次数:56  
标签:rt MODIS 掩膜 Python mcd15 file path array out

  本文介绍基于PythonGDAL模块,实现MODIS遥感影像数据的读取、计算,并基于质量控制QC波段进行图像掩膜的方法。

  前期的文章Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜详细介绍了基于Python语言gdal等模块实现遥感影像栅格数据的读取,以及基于质量评估(QA)波段实现栅格像元筛选与掩膜的全部操作。而在本文,我们依据前述这一篇博客的代码,结合大家更为熟悉的MODIS系列遥感影像产品,基于其质量评估波段进行具体的对照讲解。也就是说,本文重点不在于代码的讲解(具体代码在前述这一篇博客中已经很详细地介绍了),而是将上述代码在更为具体的一个实践中加以应用,告诉大家该如何选择波段、处理质量评估QA波段并进行筛选操作等。同时,这里还有一点需要注意:在MODIS系列遥感影像中,质量评估波段更应该称为质量控制波段,因为其官方手册中将其写作Quality Control,因此后文就写作质量控制波段或QC波段。

  首先,需要下载好对应的MODIS数据,大家可以依据文章批量下载MODIS遥感影像:基于LAADS DAAC的方法中的方法进行下载。本文就以一景MODISLAI产品——MCD15A3H产品为例进行操作。

  下载后,打开HDF文件可以看到,其具有很多波段,同时包括质量控制QC波段;且在FPARLAI波段中,像元数值方面还具有精度较低的像元值、填充值等无效数值。上述这些都需要我们在读取数据时加以识别、处理与筛选。

  由于MODIS系列遥感影像产品种类较多,不同产品之间的属性差异较大;因此建议大家每次使用一种MODIS产品时,都到官网查看其基本信息,有需要的话还可以在官网下载对应产品的用户手册。前面提到,本文所用产品为MCD15A3H,因此可以在其官网查阅其基本信息或下载用户手册查看更为详细的产品属性。

  例如,下图所示即为用户手册中关于这一产品一景影像中波段分布情况与每一个波段具体信息的介绍表格;其中包括了波段含义、数据类型、填充值范围、有效值范围与缩放系数等关键参数,这些对于后期我们用gdal读取.hdf格式栅格文件而言具有重要意义。

  接下来,质量控制QC波段同样是执行栅格读取操作前有必要了解的信息。下图所示即为用户手册中关于这一产品一景影像中质量控制QC波段具体信息介绍的表格,其中包含了当前一景影像中FPARLAI产品的每一个像元所对应的算法、传感器、云覆盖等信息。这里需要注意的是:在MCD15A3H产品中是有2个质量控制QC波段的,这个是第一个QC,而第二个QC主要包括水陆区域、冰雪区域、气溶胶等信息,本文中暂且不涉及第二个QC

  其中,由上表可知,QC波段的信息一共是由07共8个比特位(即Bit No.)组成,其中,由若干个比特位又可以组成Bit-word,每一个Bit-word就代表某一种QC波段信息。结合上图,我们可以对照下图这样一个实例进行理解:

  结合以上基本信息,我们已经对MCD15A3H产品的基本信息有了一定了解。接下来就可以进行栅格数据的读取与处理、筛选了。

  在这里需要注意的是,之前的两篇文章Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜以及Python批量读取HDF多波段栅格数据并绘制像元直方图已经对本次所要用到的大部分需求与代码加以实现并进行了详细讲解,这里就不再赘述。本文代码所实现功能与上述第一篇博客中的需求一致,唯一不同的是将GLASS产品更改为了MCD15A3H产品,且仅需对MCD15A3H产品的主算法像元加以做差计算(也就是筛选出MCD15A3H产品中第一个QC波段对应二进制数的第一位为0的像元,其它像元就不用参与差值计算了)。

  具体代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 25 14:57:45 2021

@author: fkxxgis
"""

import os
import copy
import numpy as np
from osgeo import gdal

rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/RT_LAI/"
mcd15_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/mcd15A3H/"
out_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/"

rt_file_list=os.listdir(rt_file_path)
for rt_file in rt_file_list:
    rt_file_split=rt_file.split("_")
    rt_hv=rt_file_split[3][:-4]
    
    mcd15_file_list=os.listdir(mcd15_file_path)
    for mcd15_file in mcd15_file_list:
        if rt_hv in mcd15_file:
            rt_file_tif_path=rt_file_path+rt_file
            mcd15_file_tif_path=mcd15_file_path+mcd15_file
            
            drt_out_file_path=out_file_path+"drt/"
            if not os.path.exists(drt_out_file_path):
                os.makedirs(drt_out_file_path)
            drt_out_file_tif_path=drt_out_file_path+rt_hv+".tif"
            
            eco_out_file_path=out_file_path+"eco/"
            if not os.path.exists(eco_out_file_path):
                os.makedirs(eco_out_file_path)
            eco_out_file_tif_path=eco_out_file_path+rt_hv+".tif"
            
            wat_out_file_path=out_file_path+"wat/"
            if not os.path.exists(wat_out_file_path):
                os.makedirs(wat_out_file_path)
            wat_out_file_tif_path=wat_out_file_path+rt_hv+".tif"
            
            tim_out_file_path=out_file_path+"tim/"
            if not os.path.exists(tim_out_file_path):
                os.makedirs(tim_out_file_path)
            tim_out_file_tif_path=tim_out_file_path+rt_hv+".tif"
            
            rt_raster=gdal.Open(rt_file_tif_path)
            rt_raster_array=rt_raster.ReadAsArray()
            rt_lai_array=rt_raster_array[0]
            rt_qa_array=rt_raster_array[1]
            rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array)
            rt_lai_array_fin=rt_lai_array_mask*0.001
            
            mcd15_raster=gdal.Open(mcd15_file_tif_path)
            mcd15_sub_dataset=mcd15_raster.GetSubDatasets()
            # for sub_dataset in mcd15_sub_dataset:
            #     print(sub_dataset[1])
            # print(mcd15_sub_dataset[1][1])
            # print(mcd15_sub_dataset[2][1])
            mcd15_sub_lai=gdal.Open(mcd15_sub_dataset[1][0])
            mcd15_sub_qc=gdal.Open(mcd15_sub_dataset[2][0])
            mcd15_lai_array=mcd15_sub_lai.ReadAsArray()
            mcd15_qc_array=mcd15_sub_qc.ReadAsArray()
            mcd15_lai_array_mask=np.where(mcd15_lai_array>248,np.nan,mcd15_lai_array)
            mcd15_lai_array_fin=mcd15_lai_array_mask*0.1
            
            rt_qa_array_bin=copy.copy(rt_qa_array)
            rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape
            for i in range(rt_qa_array_row):
                for j in range(rt_qa_array_col):
                    rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:]
            
            mcd15_qc_array_bin=copy.copy(mcd15_qc_array)
            mcd15_qc_array_row,mcd15_qc_array_col=mcd15_qc_array.shape
            for i in range(mcd15_qc_array_row):
                for j in range(mcd15_qc_array_col):
                    mcd15_qc_array_bin[i][j]="{:08b}".format(mcd15_qc_array[i][j])[-1:]
            
            mcd15_lai_main_array=np.where(mcd15_qc_array_bin==1,np.nan,mcd15_lai_array_fin)
            
            lai_dif=rt_lai_array_fin-mcd15_lai_main_array
            lai_dif=lai_dif*1000
            
            drt_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11),
                                       np.nan,lai_dif)
            eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111),
                                       np.nan,lai_dif)
            wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011),
                                       np.nan,lai_dif)
            tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111),
                                       np.nan,lai_dif)
            
            row=rt_raster.RasterYSize
            col=rt_raster.RasterXSize
            geotransform=rt_raster.GetGeoTransform()
            projection=rt_raster.GetProjection()
            
            # 输出为int格式后,所得结果中0就是NoData
            driver=gdal.GetDriverByName("Gtiff")
            out_drt_lai=driver.Create(drt_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_drt_lai.SetGeoTransform(geotransform)
            out_drt_lai.SetProjection(projection)
            out_drt_lai.GetRasterBand(1).WriteArray(drt_lai_dif_array)
            out_drt_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_eco_lai.SetGeoTransform(geotransform)
            out_eco_lai.SetProjection(projection)
            out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array)
            out_eco_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_wat_lai.SetGeoTransform(geotransform)
            out_wat_lai.SetProjection(projection)
            out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array)
            out_wat_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_tim_lai.SetGeoTransform(geotransform)
            out_tim_lai.SetProjection(projection)
            out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array)
            out_tim_lai=None
            
            print(rt_hv)

  至此,大功告成。

标签:rt,MODIS,掩膜,Python,mcd15,file,path,array,out
From: https://www.cnblogs.com/fkxxgis/p/17203063.html

相关文章

  • 实验1 Python开发环境使用和编程初体验
    实验任务1“关于print”task1_1:实验源码:#task1_1print的使用print('hey,u')#输出单个字符串或者单个变量print('hey','u')x,y,z=1,2,3print(x,y,z)#输出多......
  • python环境搭建
    背景近期由于公司需要,需要搭建python运行环境,现在简单记录一下python环境搭建过程1.第一步下载annaconda解释一下:我个人觉得如果只下载python2.0或者3.0就能够替代ann......
  • PYTHON进阶
    PYTHON进阶闭包在嵌套函数的前提下,内部函数使用了外部函数的变量,并且外部函数返回了内部函数,这个使用外部函数变量的内部函数称为闭包优点:无需定义全局变量即可实现......
  • python中如何去重
    一、列表中去重一、使用for循环实现列表去重此方法去重后,原顺序保持不变。#for循环实现列表去重list1=['a','b',1,3,9,9,'a']list2=[]forl1inl......
  • 使用Python实现单例模式
    在使用类名()创建对象时,python解释器首先会调用__new__()方法为对象分配内存,然后再调用__init__()方法进行初始化: 其中__new__()是object基类提供的内置静态方......
  • Python中的十进制、八进制与十六进制
    在计算机中,通常使用十六进制表示内存地址:在python中使用print输出对象变量,默认情况下,能够输出这个变量引用的对象是由哪一个类创建的对象,以及内存中的地址(使用的十六进制)......
  • 30天帮你一步步学会Python的开源项目
    最近发现一个不错的免费开源学习项目:30天学会Python如果您最近有学习Python的打算,不妨看看这个是否适合你?项目地址:https://github.com/Asabeneh/30-Days-Of-Python博客......
  • Python中的比较
    在python中使用比较时,会使用到"=="和身份运算符 身份运算符:运算符描述实例isis是判断两个标识符是不是引用的同一个对象xisy等价于id(x)==id(y)......
  • python pandas DataFrame, Series 为空的情况
      #!/usr/bin/evnpythonimportnumpyasnpimportpandasaspddf_empty=pd.DataFrame({"empty_index":[]})print("df_empty:",df_empty)ifdf_empty.em......
  • 只需几步小白也能写出python爬虫代码
    关于爬虫怎么写,我们应该从最简单的商品的批量爬取说起,下面就是我写的一个简单的Python代码,看如何爬取并并存储到MySQL数据库中。首先,需要安装必要的第三方库,如:requests,Bea......