首页 > 编程语言 ># 代码随想录算法训练营Day28 回溯算法|93.复原IP地址 78.子集 90.子集II

# 代码随想录算法训练营Day28 回溯算法|93.复原IP地址 78.子集 90.子集II

时间:2023-02-28 16:02:27浏览次数:56  
标签:nums int 随想录 startIndex 算法 vector 子集 result

代码随想录算法训练营

93.复原IP地址

题目链接:93.复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "[email protected]" 是 无效的 IP 地址。

总体思路

本体仍是切个问题,切个问题就可以用回溯将所有可能性搜出来,切割问题可以抽象为树形结构

回溯三部曲

  • 确认递归函数的参数
    startIndex是一定需要的,因为不能重复分割,需要记录下一层递归分割的起始位置。
    本体还需要定义变量pointNum,记录添加都点的数量。
    代码实现:
vector<string> result;//记录结果
//startIndex搜索的起始位置,pointNum:添加都点的数量
void backtracking(string& s,int startIndex, int pointNum){}
  • 确定递归的终止条件
    本体明确只会分成4段,所以不能用切割线且到最后作为终止条件,而是分割的段数作为终止条件。
    pointNum表示逗点数量,pointNum为3说明字符串分成了4段。
    然后验证第4段是否合法,合法即加入到结果集内
if(pointNum==3){//逗点数量为3时,分隔结束
	//判断第四段字符串是否合法,合法则加入result中
	if(isValid(s,startIndex,s.size()-1)){
		result.push_back(s);
	}
	return;
}
  • 确定递归的具体函数
    for(int i=startIndex;i<s.size();i++循环中[startIndex,i]这个区间就是截取的字串,需要判断这个字串是否合法。
    如果合法就加入符号.表示已经分割
    如果不合法就结束本层循环,如图中剪掉的分支

    然后是递归和回溯的过程:
    递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入分割符.),同时记录分隔符数量pointNum要+1.
    回溯的时候就将刚刚加入的分隔符. 删掉就行,pointNum也要-1
for(int i=startIndex;i<s.size();i++){
	if(isValid(s,startIndex,i)){//判断[startIndex,i]这个区间的子串是否合法
		s.insert(s.begin(+i+1,'.'));//在i的后面插入下一个逗点
		pointNum++;
		backtracking(s,i+2,pointNum);//插入逗点后下个子串的起始位置为i+2
		pointNum--;                  //回溯
		s.erase(s.begin()+i+1);      //回溯删掉逗点
	}
}

判断子串是否合法

主要考虑如下三点:

  • 段位以0开头不合法
  • 段位里有非正整数字符不合法
  • 段位如果大于255不合法
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s, int start, int end) {
    if (start > end) {
        return false;
    }
    if (s[start] == '0' && start != end) { // 0开头的数字不合法
            return false;
    }
    int num = 0;
    for (int i = start; i <= end; i++) {
        if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
            return false;
        }
        num = num * 10 + (s[i] - '0');
        if (num > 255) { // 如果大于255了不合法
            return false;
        }
    }
    return true;
}

整体代码:

class Solution {
private:
    vector<string> result;// 记录结果
    // startIndex: 搜索的起始位置,pointNum:添加逗点的数量
    void backtracking(string& s, int startIndex, int pointNum) {
        if (pointNum == 3) { // 逗点数量为3时,分隔结束
            // 判断第四段子字符串是否合法,如果合法就放进result中
            if (isValid(s, startIndex, s.size() - 1)) {
                result.push_back(s);
            }
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
                s.insert(s.begin() + i + 1 , '.');  // 在i的后面插入一个逗点
                pointNum++;
                backtracking(s, i + 2, pointNum);   // 插入逗点之后下一个子串的起始位置为i+2
                pointNum--;                         // 回溯
                s.erase(s.begin() + i + 1);         // 回溯删掉逗点
            } else break; // 不合法,直接结束本层循环
        }
    }
    // 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
    bool isValid(const string& s, int start, int end) {
        if (start > end) {
            return false;
        }
        if (s[start] == '0' && start != end) { // 0开头的数字不合法
                return false;
        }
        int num = 0;
        for (int i = start; i <= end; i++) {
            if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
                return false;
            }
            num = num * 10 + (s[i] - '0');
            if (num > 255) { // 如果大于255了不合法
                return false;
            }
        }
        return true;
    }
public:
    vector<string> restoreIpAddresses(string s) {
        result.clear();
        if (s.size() < 4 || s.size() > 12) return result; // 算是剪枝了
        backtracking(s, 0, 0);
        return result;
    }
};

78.子集

题目链接:78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   [2],   [1,2,3],   [1,3],   [2,3],   [1,2],   [] ]

总体思路

如果把自己问题、组合问题、分割问题都抽象为树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找数的所有结点。
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
有同学问了,什么时候for可以从0开始呢?
求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:

从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合

回溯三部曲

  • 确定递归的参数
    全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
    递归函数参数在上面讲到了,需要startIndex。
    代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
  • 确定递归的终止条件

    剩余集合为空时,就是叶子节点
    什么时候剩余集合为空呢?
    startIndex已经大于数组长度时,就终止了,因为没有元素可以提取。
if (startIndex >= nums.size()) {
    return;
}

其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了

  • 确定递归的具体函数
    求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树
    那么单层递归逻辑代码如下:
for (int i = startIndex; i < nums.size(); i++) {
    path.push_back(nums[i]);    // 子集收集元素
    backtracking(nums, i + 1);  // 注意从i+1开始,元素不重复取
    path.pop_back();            // 回溯
}

总体代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
        if (startIndex >= nums.size()) { // 终止条件可以不加
            return;
        }
        for (int i = startIndex; i < nums.size(); i++) {
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

90.子集II

题目链接:90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。

总体思路

那么关于回溯算法中的去重问题,40.组合总和II中已经详细讲解过了,和本题是一个套路
剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要
用示例中的[1, 2, 2] 来举例,如图所示: (注意去重需要先对集合排序

从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!
本题就是其实就是回溯算法:求子集问题!的基础上加上了去重,去重我们在回溯算法:求组合总和(三)也讲过了,所以我就直接给出代码了:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
        result.push_back(path);
        for (int i = startIndex; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 而我们要对同一树层使用过的元素进行跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            path.push_back(nums[i]);
            used[i] = true;
            backtracking(nums, i + 1, used);
            used[i] = false;
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0, used);
        return result;
    }
};

使用set去重版本:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path);
        unordered_set<int> uset;
        for (int i = startIndex; i < nums.size(); i++) {
            if (uset.find(nums[i]) != uset.end()) {
                continue;
            }
            uset.insert(nums[i]);
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0);
        return result;
    }
};

标签:nums,int,随想录,startIndex,算法,vector,子集,result
From: https://www.cnblogs.com/bailichangchuan/p/17164603.html

相关文章

  • 经典算法动态规划(dp问题归纳)
    1,线性dp求连续子区间问题输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。栗子:输入:1-2310-472-......
  • 经典算法贪心(刷题归纳)
    <贪心算法greedyalgorithnm>本质是让机器模拟人类,每次都按照某一个标准取最优解,一般常用最优子结构问题,但不是所有的时候贪心都获得最优解。跟DP最大的区别在于,贪心不可......
  • 1.4 算法和算法分析
    1.4算法和算法分析算法定义对特定问题求解方法和步骤的一种描述,它是指令的有限序列。其中每个指令的表示一个或多个操作。简而言之,算法就是解决问题的方法和步骤。......
  • 算法和算法分析2
    对于同一个问题,可以有许多不同的算法。究竟如何来评价这些算法的优劣程度呢?算法分析的目的是看算法实际是否可行,并在同一问题存在多的算法时可进行性能上的比较,以便于从中......
  • 每日算法--2023.2.28
    1.剑指offer56数组中数字出现的次数2classSolution{publicintsingleNumber(int[]nums){int[]cnt=newint[32];intn=nums.length;......
  • 《分布式技术原理与算法解析》学习笔记Day25
    负载均衡负载均衡是分布式可靠性中非常关键的一个问题,它在一定程度上反映了分布式系统对业务处理的能力。什么是负载均衡?负载均衡可以分为两种:请求负载均衡,即将用户的......
  • LeetCode算法训练-回溯 491.递增子序列 46.全排列 47.全排列 II
    欢迎关注个人公众号:爱喝可可牛奶LeetCode算法训练-回溯491.递增子序列46.全排列47.全排列IILeetCode491.递增子序列分析找出并返回所有数组中不同的递增子序列......
  • 代码随想录算法Day27 | 39. 组合总和 , 40.组合总和II ,131.分割回文串
    39.组合总和题目链接:39.组合总和-力扣(LeetCode)思路既然题目说可以数组中的数可以无限制重复被选取,那么说明在选取该元素的下一个分支也可以继续使用。选取和剪枝过......
  • 代码随想录day13 | 滑动窗口最大值 前 K 个高频元素
    滑动窗口最大值题目:给你一个整数数组nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的k 个数字。滑动窗口每次只向右......
  • 代码随想录训练营day 2 |977有序数组的平方 209.长度最小的子数组 (C++)
    977、有序数组的平方题目链接:977、有序数组的平方题目描述:给你一个按非递减顺序排序的整数数组nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。例......