首页 > 编程语言 >算法模板

算法模板

时间:2022-09-04 17:58:38浏览次数:47  
标签:return int tr ++ 算法 const 模板 size

基础算法

倍增

int get(int l, int r) {
    int d = r - l + 1;
    int c = upper_bound(one, one + max_v + 1, d) - one - 1;
    return max(dp[l][c], dp[r - one[c] + 1][c]);
//    return min(dp[l][c], dp[r - one[c] + 1][c]);
}
void init() {
    for (int i = 0; i <= max_v; i++) one[i] = 1 << i;
    for (int d = 0; d <= max_v; d++) {
        for (int i = 1; i <= n; i++) {
            if (d == 0) dp[i][0] = a[i];
            else {
                int c = min(n, i + one[d - 1]);
                dp[i][d] = max(dp[i][d - 1], dp[c][d - 1]);
//                dp[i][d] = min(dp[i][d - 1], dp[c][d - 1]);
            }
        }
    }
}

高精度

struct HAA{
    vector<int> a;
    int Mod = 0;
    HAA(int x = 1, int _mod = 0) {
        a.push_back(x), Mod = _mod;
    }
    HAA(vector<int> &b, int _mod = 0) {
        a = b, Mod = _mod;
    }
    HAA operator + (const HAA &c) const {
        vector<int> b;
        int t = 0;
        for (int i = 0; i < a.size() || i < c.a.size() || t; i++) {
            if (i < a.size()) t += a[i];
            if (i < c.a.size()) t += c.a[i];
            b.push_back(t % 10);
            t /= 10;
        }
        while (b.size() > 1 && b.back() == 0) b.pop_back();
        return HAA(b);
    }
    HAA operator - (const HAA &c) const {
        int t = 0;
        vector<int> b;
        for (int i = 0; i < a.size(); i++) {
            t = a[i] - t;
            if (i < c.a.size()) t -= c.a[i];
            b.push_back((t + 10) % 10);
            if (t < 0) t = 1;
            else t = 0;
        }
        while (b.size() > 1 && b.back() == 0) b.pop_back();
        return HAA(b);
    }
    HAA operator / (const int &c) const {
        int t = 0;
        vector<int> b;
        for (int i = (int)a.size() - 1; i >= 0; i--) {
            t = t * 10 + a[i];
            b.push_back(t / c);
            t = t % c;
        }
        reverse(b.begin(), b.end());
        while (b.size() > 1 && b.back() == 0) b.pop_back();
        return HAA(b, t);
    }
    HAA operator * (const int &c) const {
        int t = 0;
        vector<int> b;
        for (int i = 0; i < a.size() || t; i++) {
            if (i < a.size())t += a[i] * c;
            b.push_back(t % 10);
            t /= 10;
        }
        while (b.back() == 0 && b.size() > 1) b.pop_back();
        return HAA(b);
    }
    ll get_Mod() { return Mod; }
    void print() {
        for (int i = (int)a.size() - 1; i >= 0; i--) printf("%d", a[i]);
        puts("");
    }
    static bool cmp(const HAA &a, const HAA &b) {
        if (a.a.size() > b.a.size()) return true;
        else if (a.a.size() < b.a.size()) return false;
        for (int i = (int)a.a.size() - 1; i >= 0; i--) {
            if (a.a[i] > b.a[i]) return true;
            else if (a.a[i] < b.a[i]) return false;
        }
        return true;
    }
};

搜索

双向广搜

// 内部
int extend(queue<string> &q, map<string, int> &da, map<string, int> &db) {
    // 队列规则
    return max + 1;
}
// 外部
int bfs(string x, string y) {
    queue<string> qa, qb;
    map<string, int> da, db;
    da[x] = 0, qa.push(x);
    db[y] = 0, qb.push(y);
    while (qa.size() && qb.size()) {
        int t;
        if (qa.size() <= qb.size())t = extend(qa, da, db);
        else t = extend(qb, db, da);
        if (t <= max) return t;
    }
    // max为最大限制
    return max;
}

欧拉回路

// 此模板用于解决一笔画问题,并记录路径。
void dfs(int u) {
    for (int &i = h[u], t; ~i;) {
        int j = e[i];
        if (st[i]) {
            i = ne[i]; //引用改变h[u]的值
            continue;
        }
        st[i] = true;
        
        
        i = ne[i];// h[u]删去以遍历的边,需要放在dfs前
        dfs(j);
        ans[++cnt] = t;
    }
}

数据结构

splay

// 将x这个点往上翻转
void rotate(int x) {
    int y = tr[x].p, z = tr[y].p;
    int k = tr[y].s[1] == x;
    tr[z].s[tr[z].s[1] == y] = x, tr[x].p = z;
    tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[x].s[k ^ 1]].p = y;
    tr[x].s[k ^ 1] = y, tr[y].p = x;
    pushup(y), pushup(x);
}
// 将x翻转到k的下方
void splay(int x, int k) {
    while (tr[x].p != k) {
        int y = tr[x].p, z = tr[y].p;
        if (k != z) {
            if ((tr[y].s[1] == x) ^ (tr[z].s[1] == y))rotate(x);
            else rotate(y);
        }
        rotate(x);
    }
    if (!k)root = x;
}
// 按照权值大小插入某个值保证单调性
void insert(int v) {
    int u = root, p = 0;
    // p为当前节点,u为需要放到的位置节点
    while (u != 0)p = u, u = tr[u].s[v > tr[u].v];
    u = ++idx;
    if (p)tr[p].s[v > tr[p].v] = u;
    tr[u].init(v, p);
    splay(u, 0);
}

主席树

// 结构体
struct node{
    int l, r;
    // int cnt;
}tr[N * 4 + N * 17];
// 哨兵,最开始未修改的线段树
int build(int l, int r) {
    int p = ++idx;
    if (l == r) {
        return p;
    }
    int mid = l + r >> 1;
    tr[p].l = build(l, mid);
    tr[p].r = build(mid + 1, r);
    return p;
}
// 插入最新版本的线段树,是从q那个版本转移而来
int insert(int q, int l, int r, int x) {
    int p = ++idx;
    tr[p] = tr[q];
    if (l == r) {
        tr[p].cnt++;
        return p;
    }
    int mid = l + r >> 1;
    if (x <= mid) tr[p].l = insert(tr[q].l, l, mid, x);
    else tr[p].r = insert(tr[q].r, mid + 1, r, x);
    push_up(p);
    return p;
}
// 查询l ~ r之间构成的线段树
int query(int p, int q, int l, int r, int k) {
    if (l == r) return vec[l];
    int mid = l + r >> 1;
    // 线段树操作

    // int d = tr[tr[p].l].cnt - tr[tr[q].l].cnt;
    // if (d >= k) return query(tr[p].l, tr[q].l, l, mid, k);
    // return query(tr[p].r, tr[q].r, mid + 1, r, k - d);
}

字符串

KMP

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+5,M=1e6+5;
char p[N], s[M];
int ne[N];
int n, m;
int main() {
    cin >> n >> p + 1 >> m >> s + 1;
    for(int i=2,j=0;i<=n;i++) {
        while (j && t[i] != t[j + 1])j = ne[j];
        if (t[j + 1] == t[i])j++;
        ne[i] = j;
        while (ne[i] && t[i + 1] == t[ne[i] + 1]) ne[i] = ne[j];
    }
    for (int i = 1, j = 0; i <= m; i++) {
        while (j && s[i] != p[j + 1])j = ne[j];
        if (s[i] == p[j + 1])j++;
        if (j == n) {
            printf("%d ", i - n);
            j = ne[j];
        }
    }
    return 0;
}

字符串哈希

#include "iostream"
#include "cstdio"
using namespace std;
typedef unsigned long long ULL;
const int N = 1e5 + 5, P = 131;
char str[N];
ULL h[N], p[N];
// 获取字符串哈希
ULL get(int l,int r) {
    return h[r] - h[l - 1] * p[r - l + 1];
}
int main() {
    // 初始化
    int n;
    scanf("%d", &n);
    scanf("%s", str);
    p[0] = 1;
    for (int i = 1; i <= n; i++) {
        p[i] = p[i - 1] * P;
        h[i] = h[i - 1] * P + str[i - 1];
    }
    return 0;
}

AC自动机

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 1e4 + 5, M = 1e6 + 5;
char s[M];
int p[N * 50][26];
int cnt[N * 50];
int ne[N * 50], n, idx;
// insert建立字典树
void insert() {
    int m = strlen(s), q = 0;
    for (int i = 0; i < m; i++) {
        int t = s[i] - 'a';
        if (!p[q][t]) p[q][t] = ++idx;
        q = p[q][t];
    }
    cnt[q]++;
}
// 通过字典树更新ne数组
void build() {
    queue<int> que;
    int q = 0;
    for (int i = 0; i < 26; i++) {
        if (p[q][i]) que.push(p[q][i]);
    }
    while (que.size()) {
        int u = que.front();
        que.pop();
        for (int i = 0; i < 26; i++) {
            int c = p[u][i];
            if (!c) p[u][i] = p[ne[u]][i];
            else {
                ne[c] = p[ne[u]][i];
                que.push(c);
            }
        }
    }
}
int main() {
    scanf("%d", &n);
    while (n--) {
        scanf("%s", s);
        insert();
    }
    build();
    scanf("%s", s + 1);
    m = strlen(s + 1);
    int res = 0;
    for (int i = 1, j = 0; i <= m; i++) {
        int t = s[i] - 'a';
        j = p[j][t];
        int q = j;
        while (q) {
            res += cnt[q];
            cnt[q] = 0;
            q = ne[q];
        }
    }
    printf("%d\n", res);
    return 0;
}

数学

欧拉降幂

\( A^K(mod\ m)= \begin{cases} A^{K\%\phi(m)},&m,A互质\\ A^{K\%\phi(m)+\phi(m)},&K\geqslant\phi(m)\\ A^{K} &K<\phi(m)\\ \end{cases} \)

数列求和公式

  • 平方和求和:\(\sum_{k=1}^{n}k^2=\frac{n(n+1)(n+2)}{6}\)

组合数公式

  • 杨辉恒等式: \(C(n,k)=C(n−1,k)+C(n−1,k−1)\)
  • 对称性:\(C(n,k)=C(n,n−k)\)
  • 单行和:\(\sum_{i=0}^{n}C(n,i)=2^n\)
  • 单行平方和:\(\sum_{i=0}^{n}C(n,i)^2=C(2n,n)\)
  • 斜60行和=反斜下一行对应值:\(\sum_{i=0}^{n}C(k+i,k)=C(k+n+1,k+1)\)
  • 30∘ 斜行和等于Fibonacci数列:

\[f[n] = \begin{cases} \sum_{i=0}^{n/2-1}C(n/2+i,2i+1),&n≡0mod2\\ \sum_{i=0}^{(n-1)/2}C((n-1)/2+i,2i),&n≡1mod2\\ \end{cases} \]

  • 递推式:\(C(n,i)=\frac{(n+1-i)}i*C(n,i-1)\)
  • 求组合数某一段的和:\(\sum_{i=a}^{b}C(i,j)=C(b+1,j+1)-C(a,j+1)\)
  • \(C(n,m)\)的奇偶性:n&m=m为奇,否则为偶(lucas定理推论)
  • 卡特兰数:
    • \(\frac{C(2n,n)}{n+1}\)
    • \(C(n+m,n)-C(n+m,n-1)\)
    • \(\frac{C(n+m,n)*(m+1-n)}{m+1}\)

整除分块:\(n/(n/x)\)

// 两个数的整除分块
for (int l = 1, r; l <= R; l = r + 1) {
    r = L / l ? min(L / (L / l), R / (R / l)) : R / (R / l);
}
// 一个数的整除分块
for (int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / l);
}

扩展欧几里得

ll extend(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    ll t = extend(b, a % b, y, x);
    y -= a / b * x;
    return t;
}

乘法逆元:\(P=P*\lfloor{\frac{P}{i}}\rfloor+P\%i\)

for(int i = 2; i <= n; i++) {
    inv[i] = (-inv[p % i] * (p / i)) % p + p;
}

莫比乌斯反演

  • 反演一:\(f(n)=\sum_{d|n} g(d), g(n)=\sum_{d|n}μ(\frac{n}{d})*f(d)\)。
  • 反演二:\(f(d)=\sum_{d|n} g(n), g(d)=\sum_{d|n}μ(\frac{n}{d})*f(n)\)。
void init(int n) { // 欧拉筛模板
    mobius[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!st[i]) p[idx++] = i, mobius[i] = -1;
        for (int j = 0; p[j] <= n / i; j++) {
            st[i * p[j]] = true;
            if (i % p[j] == 0) break;
            mobius[i * p[j]] = mobius[i] * -1;
        }
    }
}
  • \(M[n]=\sum_{i=1}^nμ[i]\)
  • \(M[n]=1-\sum_{i=2}^nM[\lfloor{\frac{n}{i}}\rfloor]\)
ll Djs(int n) { // 杜教筛模板
    if (n < N) return mobius[n];
    if (mp.count(n)) return mp[n];
    int ans = 1;
    for (int l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans - 1ll * (r - l + 1) * Djs(n / l) % mod + mod) % mod;
    }
    return mp[n] = ans;
}

矩阵

struct Matrix{ // 矩阵模板
    int a[M][M];
    Matrix(int x = 0) {
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < M; j++) {
                if (i == j) a[i][i] = x;
                else a[i][i] = 0;
            }
        }
    }
    Matrix operator * (const Matrix &that) const {
        Matrix ret;
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < M; j++) {
                for (int k = 0; k < M; k++) {
                    ret.a[i][j] = limit(ret.a[i][j] + (ll)this->a[i][k] * that.a[k][j]);
                }
            }
        }
        return ret;
    }
    Matrix operator + (const Matrix &that) const {
        Matrix ret;
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < M; j++) {
                ret.a[i][j] = limit((ll)this->a[i][j] + that.a[i][j]);
            }
        }
        return ret;
    }
    static ll limit(ll x) {
        if (x >= mod) return x % mod;
        return x;
    }
    void qsm(ll b) {
        Matrix E;
        // 给需要快速幂的矩阵赋值.
        while (b) {
            if (b & 1) *(this) = E * (*this);
            E = E * E;
            b >>= 1;
        }
    }
};

生成函数

形式幂级数常见的逆:

  • 常生成函数:\(A(x)B(x)=1\)
    • \(A(x)=\sum_{i=0}x^i\),\(B(x)=1-x\)
    • \(A(x)=\sum_{i=0}(ax)^i\),\(B(x)=1-ax\)
    • \(A(x)=\sum_{n=0}C^{k-1}_{n+k-1}x^n\),\(B(x)=(1-x)^k\)
    • \(A(x)=\sum_{i=0}f(x)^i\),\(B(x)=1-f(x)\)
  • 指数生成函数:
    • \(exp(x)=\sum_{n>=0}\frac{x^n}{n!}\)
    • \(exp(ax)=\sum_{n>=0}{\frac{(ax)^n}{n!}}\)
    • \(\frac{exp(x)+exp(-x)}{2}=\sum_{2|i}\frac{x^i}{i!}\)

欧拉定理

\(a+bi=re^{i\theta},r=\sqrt{a^2+b^2},tan(\theta)=\frac{b}{a}\)

单位根:

\(\omega^n=1,\omega^k=e^{i\frac{2k\pi}{n}}\)
常见性质:

  • \(\omega_{n}^k=\omega_{2k}^{2n}\)
  • \(\omega_{2n}^{k+n}=-\omega_{2n}^{k}\)

DFT & IDFT

  • \(\Omega{ij}=\omega^{ij}_{n},\Omega{ij}=\omega^{-ij}_{n}\)
  • 系数矩阵:\(A=(a_0,a_1,...,a_n)\)
  • 点值矩阵:\(B=(b_0,b_1,...,b_n)\)
  • \(\Omega{A}=B,A=\frac{1}{n}\Omega^{-1}B\)
递归版
#include <cmath>
#include <complex>

typedef std::complex<double> Comp;  // STL complex

const Comp I(0, 1);  // i
const int MAX_N = 1 << 20;
const double PI = acos(-1);

Comp tmp[MAX_N];

// rev=1,DFT; rev=-1,IDFT
void DFT(Comp* f, int n, int rev) {
    if (n == 1) return;
    for (int i = 0; i < n; ++i) tmp[i] = f[i];
    // 偶数放左边,奇数放右边
    for (int i = 0; i < n; ++i) {
        if (i & 1)
            f[n / 2 + i / 2] = tmp[i];
        else
            f[i / 2] = tmp[i];
    }
    Comp *g = f, *h = f + n / 2;
    // 递归 DFT
    DFT(g, n / 2, rev), DFT(h, n / 2, rev);
    // cur 是当前单位复根,对于 k = 0 而言,它对应的单位复根 omega^0_n = 1。
    // step 是两个单位复根的差,即满足 omega^k_n = step*omega^{k-1}*n,
    // 定义等价于 exp(I*(2*M_PI/n*rev))
    Comp cur(1, 0), step(cos(2 * PI / n), sin(2 * PI * rev / n));
    for (int k = 0; k < n / 2;
         ++k) {  // F(omega^k_n) = G(omega^k*{n/2}) + omega^k*n\*H(omega^k*{n/2})
        tmp[k] = g[k] + cur * h[k];
        // F(omega^{k+n/2}*n) = G(omega^k*{n/2}) - omega^k_n*H(omega^k\_{n/2})
        tmp[k + n / 2] = g[k] - cur * h[k];
        cur *= step;
    }
    for (int i = 0; i < n; ++i) f[i] = tmp[i];
}
非递归版
struct Complex {
    double x, y;
    Complex(double _x = 0.0, double _y = 0.0) {
        x = _x, y = _y;
    }
    Complex operator-(const Complex &b) const {
        return Complex(x - b.x, y - b.y);
    }
    Complex operator+(const Complex &b) const {
        return Complex(x + b.x, y + b.y);
    }
    Complex operator*(const Complex &b) const {
        return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
    }
};
void change(Complex y[], int len) {
    int k;
    for (int i = 1, j = len / 2; i < len - 1; i++) {
        if (i < j) std::swap(y[i], y[j]);
        k = len / 2;
        while (j >= k) {
            j = j - k;
            k = k / 2;
        }
        if (j < k) j += k;
    }
}
// on == 1 时是 DFT,on == -1 时是 IDFT
void fft(Complex y[], int len, int on) {
    change(y, len);
    for (int h = 2; h <= len; h <<= 1) {
        Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
        for (int j = 0; j < len; j += h) {
            Complex w(1, 0);
            for (int k = j; k < j + h / 2; k++) {
                Complex u = y[k];
                Complex t = w * y[k + h / 2];
                y[k] = u + t;
                y[k + h / 2] = u - t;
                w = w * wn;
            }
        }
    }
    if (on == -1) {
        for (int i = 0; i < len; i++) {
            y[i].x /= len;
            y[i].x += 0.5;
        }
    }
}

图论

网络流

// dinic
void add(int a, int b, int c, int d) {
    e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx++;
    e[idx] = a, ne[idx] = h[b], f[idx] = d, h[b] = idx++;
}
bool bfs() {
    memset(d, -1, sizeof(d));
    queue<int> que;
    que.push(S), d[S] = 0, cur[S] = h[S];
    while (!que.empty()) {
        int u = que.front(); que.pop();
        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (d[j] == -1 && f[i]) {
                d[j] = d[u] + 1;
                cur[j] = h[j];
                if (j == T) return true;
                que.push(j);
            }
        }
    }
    return false;
}
int find(int u, int limit) {
    if (u == T) return limit;
    int flow = 0;
    for (int i = cur[u]; ~i && flow < limit; i = ne[i]) {
        cur[u] = i;
        int j = e[i];
        if (d[j] == d[u] + 1 && f[i]) {
            int t = find(j, min(f[i], limit - flow));
            if (!t) d[j] = -1;
            f[i] -= t, f[i ^ 1] += t, flow += t;
        }
    }
    return flow;
}
int dinic() {
    int res = 0, flow;
    while (bfs()) while (flow = find(S, INF)) res += flow;
    return res;
}

有向图的强连通分量

void tarjan(int u) {
    dfn[u] = low[u] = ++cnt;
    stk.push(u), st[u] = true;
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (!dfn[j]) {
            tarjan(j);
            low[u] = min(low[u], low[j]);
        } else if (st[j])low[u] = min(low[u], dfn[j]);
    }
    if (dfn[u] == low[u]) {
        ++scc_cnt;
        while (true) {
            int v = stk.top(); 
            stk.pop();
            scc[v] = scc_cnt, st[v] = false, sum[scc_cnt]++;
            if (u == v)break;
        }
    }
}

无向图的强连通分量

  • 无向连通图中,如果删除某点后,图变成不连通,则称该点为割点
  • 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥
void tarjan(int u, int fa) {
    dfn[u] = low[u] = ++cnt;
    stk.push(u);
    // int child = 0;
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (!dfn[j]) {
            tarjan(j, i);
            low[u] = min(low[u], low[j]);
            // i和i^1为割边
            // if (dfn[u] < low[j]) st[i] = st[i ^ 1] = true; 

            // u是割点
            // if (dfn[u] <= low[j]) {
            //     child++;
            //     if (u != root || child > 1) st[u] = true;
            // }
        } else if (fa != (i ^ 1)) {
            low[u] = min(low[u], dfn[j]);
        }
    }
    if (dfn[u] == low[u]) {
        ++scc_cnt;
        while (true) {
            int v = stk.top();
            stk.pop();
            scc[v] = scc_cnt;
            if (u == v)break;
        }
    }
}

lca

void bfs() {
    memset(depth, 0x3f, sizeof(depth));
    depth[0] = 0, depth[root] = 1;
    queue<int> que;
    que.push(root);
    while (que.size()) {
        int u = que.front();
        que.pop();
        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (depth[j] > depth[u] + 1) {
                depth[j] = depth[u] + 1;
                que.push(j);
                fa[j][0] = u;
                for (int k = 1; k <= max_v; k++) {
                    fa[j][k] = fa[fa[j][k - 1]][k - 1];
                }
            }
        }
    }
}
int lca(int a,int b) {
    if (depth[a] < depth[b]) swap(a, b);
    for (int k = max_v; k >= 0; k--) {
        if (depth[fa[a][k]] >= depth[b])
            a = fa[a][k];
    }
    if (a == b)return a;
    for (int k = max_v; k >= 0; k--) {
        if (fa[a][k] != fa[b][k]) {
            a = fa[a][k];
            b = fa[b][k];
        }
    }
    return fa[a][0];
}

计算几何

求某个点在三角形内部

#include <iostream>
#include <math.h>
using namespace std;
struct Point {
    double x;
    double y;
};
double product(Point p1,Point p2,Point p3) {
    //首先根据坐标计算p1p2和p1p3的向量,然后再计算叉乘
    //p1p2 向量表示为 (p2.x-p1.x,p2.y-p1.y)
    //p1p3 向量表示为 (p3.x-p1.x,p3.y-p1.y)
    return (p2.x-p1.x)*(p3.y-p1.y) - (p2.y-p1.y)*(p3.x-p1.x);
}
bool isInTriangle(Point p1,Point p2,Point p3,Point o) {
    //保证p1,p2,p3是逆时针顺序
    if(product(p1, p2, p3)<0) return isInTriangle(p1,p3,p2,o);
    if(product(p1, p2, o)>0 && product(p2, p3, o)>0 && product(p3, p1, o)>0)
        return true;
    return false;
}
int main() {
    Point p1,p2,p3,o;
    cin >> p1.x >> p1.y;
    cin >> p2.x >> p2.y;
    cin >> p3.x >> p3.y;
    cin >> o.x >> o.y;
    bool flag = isInTriangle(p1,p2,p3,o);
    if(flag) puts("Yes");
    else puts("No");
}

标签:return,int,tr,++,算法,const,模板,size
From: https://www.cnblogs.com/syf2020/p/16655567.html

相关文章

  • 函数f(m,n)算法设计
    题目:设m,n均为自然数,m可表示为一些不超过n的自然数之和,f(m,n)为这种表示方式的数目。例f(5,3)=5,有5种表示方式:3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1。以下是该函数的程序段,请将......
  • 数据结构与算法【Java】05---排序算法总结
    前言数据data结构(structure)是一门研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码。要学习好数据结构就......
  • django4/网页伪静态/视图层/模板层
    网页伪静态动态页动态网页,页面代码虽然没有变,但是显示的内容却是可以随着时间、环境或者数据库操作的结果而发生改变的。静态页即静态网页,是实际存在的,无需经过服务器......
  • 算法
    1、lc的链表对折那道题。2、在main函数里实例化链表然后测试3、 反转链表4、 三数之和......
  • 使用DES算法的加解密Java工具类-字符串加解密
    importjavax.crypto.*;importjavax.crypto.spec.DESKeySpec;importjava.security.SecureRandom;importorg.apache.commons.codec.binary.Base64;/***@ClassN......
  • ASP.NET Core源码,数据结构和算法,
    ASP.NETCore源码:https://github.com/dotnet/aspnetcore#ASP.NETCorehttps://github.com/dotnet/runtime#extend扩展库https://github.com/aspnet/KestrelHttpServer ......
  • 排序算法整理C++(初赛)
    排序算法整理常见考点将一个乱掉的字符串排回有序(以交换为基本操作)的最少操作,就是冒泡排序。排序算法的稳定性排序算法的时间复杂度排序算法的稳定性稳定性是指排......
  • enjoy模板引擎
    <dependency> <groupId>com.jfinal</groupId> <artifactId>enjoy</artifactId> <version>5.0.0</version></dependency>importcom.jfinal.kit.Kv;importcom.jfina......
  • velocity模板渲染引擎
    <dependency><groupId>org.apache.velocity</groupId><artifactId>velocity-engine-core</artifactId><version>使用人数最多的版本</version></dependency>im......
  • 最短路算法之 Dijkstra
    部分内容参考了李煜东的《算法竞赛进阶指南》,在此声明。单源最短路径单源最短路径问题,是说,给定一张有向图(无向图)\(G=(V,E)\),\(V\)是点集,\(E\)是边集,\(|V|=n\),\(|......