首页 > 编程语言 >代码随想录算法训练营第十八天|LeetCode 513.找树左下角的值、112. 路径总和 、113.路径总和II、106.从中序与后序遍历序列构造二叉树、105.从前序与中序遍历序列构造二叉树。

代码随想录算法训练营第十八天|LeetCode 513.找树左下角的值、112. 路径总和 、113.路径总和II、106.从中序与后序遍历序列构造二叉树、105.从前序与中序遍历序列构造二叉树。

时间:2023-02-06 15:15:14浏览次数:66  
标签:遍历 return cur 中序 delimiterIndex 二叉树 数组 序列 root

513. 找树左下角的值

文章:代码随想录 (programmercarl.com)

视频:怎么找二叉树的左下角? 递归中又带回溯了,怎么办?| LeetCode:513.找二叉树左下角的值_哔哩哔哩_bilibili

思路(递归):

咋眼一看,这道题目用递归的话就就一直向左遍历,最后一个就是答案呗?

没有这么简单,一直向左遍历到最后一个,它未必是最后一行啊。

我们来分析一下题目:在树的最后一行找到最左边的值

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

如果对二叉树深度和高度还有点疑惑的话,请看:110.平衡二叉树 (opens new window)

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  1. 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
  1. 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (depth > maxDepth) {
        maxDepth = depth;           // 更新最大深度
        result = root->val;   // 最大深度最左面的数值
    }
    return;
}
  1. 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左
    depth++; // 深度加一
    traversal(root->left, depth);
    depth--; // 回溯,深度减一
}
if (root->right) { // 右
    depth++; // 深度加一
    traversal(root->right, depth);
    depth--; // 回溯,深度减一
}
return;

题解:

//递归
class Solution {
public:
    int maxDepth = INT_MIN;
    int result = 0;
    void traversal(TreeNode* node, int depth)
    {
        if (node->left == NULL && node->right == NULL)
        {
            if (depth > maxDepth)
            {
                maxDepth = depth;
                result = node->val;
            }
            return; //本轮递归结束
        }
        if (node->left != NULL)
        {
            depth++;
            traversal(node->left, depth);
            depth--; //回溯
        }
        if (node->right != NULL)
        {
            depth++;
            traversal(node->right, depth);
            depth--; //回溯
        }
        return; //本轮递归结束
    }

    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};
//迭代
class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL)
        {
            que.push(root);
        }
        int result = 0;
        while (!que.empty())
        {
            int size = que.size();
            for (int i = 0; i < size; i++)
            {
                TreeNode* node = que.front();
                que.pop();
                if (i == 0)
                {
                    result = node->val;
                }
                if (node->left != NULL)
                {
                    que.push(node->left);
                }
                if (node->right != NULL)
                {
                    que.push(node->right);
                }
            }
        }
        return result;
    }
};

112. 路径总和

文章:代码随想录 (programmercarl.com)

视频:拿不准的遍历顺序,搞不清的回溯过程,我太难了! | LeetCode:112. 路径总和_哔哩哔哩_bilibili

思路:

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树

  1. 确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型
  1. 确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  1. 确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。

回溯隐藏在traversal(cur->left, count - cur->left->val)这里, 因为把count - cur->left->val 直接作为参数传进去,函数结束,count的数值没有改变。

为了把回溯的过程体现出来,可以改为如下代码:

if (cur->left) { // 左
    count -= cur->left->val; // 递归,处理节点;
    if (traversal(cur->left, count)) return true;
    count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
    count -= cur->right->val;
    if (traversal(cur->right, count)) return true;
    count += cur->right->val;
}
return false;

题解:

class Solution {
public:
    bool traversal(TreeNode* cur, int count)
    {
        //中
        if (cur->left == NULL && cur->right == NULL && count == 0)
        {
            return true;
        }
        if (cur->left == NULL && cur->right == NULL && count != 0)
        {
            return false;
        }
        //左
        if (cur->left != NULL)
        {
            count -= cur->left->val;
            if (traversal(cur->left, count))
            {
                return true;
            }
            count += cur->left->val;
        }
        //右
        if (cur->right != NULL)
        {
            count -= cur->right->val;
            if (traversal(cur->right, count))
            {
                return true;
            }
            count += cur->right->val;
        }
        return false;
    }
    bool hasPathSum(TreeNode* root, int targetSum) {
        if (root == NULL)
        {
            return false;
        }
        return traversal(root, targetSum - root->val);
    }
};

113. 路径总和 II

题解:

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void traversal(TreeNode* cur, int count)
    {
        //中
        if (cur->left == NULL &&cur->right == NULL && count == 0)
        {
            result.push_back(path); 
            return;
        }
        if (cur->left == NULL && cur->right == NULL && count != 0)
        {
            return;
        }
        //左
        if (cur->left != NULL)
        {
            path.push_back(cur->left->val);
            count -= cur->left->val;
            traversal(cur->left, count);
            count += cur->left->val;
            path.pop_back();
        }
        //右
        if (cur->right != NULL)
        {
            path.push_back(cur->right->val);
            count -= cur->right->val;
            traversal(cur->right, count);
            count += cur->right->val;
            path.pop_back();
        }
        return;
    }
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        result.clear();
        path.clear();
        if (root == NULL)
        {
            return result;
        }
        path.push_back(root->val);
        traversal(root, targetSum - root->val);
        return result;
    }
};

106. 从中序与后序遍历序列构造二叉树

文章:代码随想录 (programmercarl.com)

视频:坑很多!来看看你掉过几次坑 | LeetCode:106.从中序与后序遍历序列构造二叉树_哔哩哔哩_bilibili

思路:首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。
  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
  • 第五步:切割后序数组,切成后序左数组和后序右数组
  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {

    // 第一步
    if (postorder.size() == 0) return NULL;

    // 第二步:后序遍历数组最后一个元素,就是当前的中间节点
    int rootValue = postorder[postorder.size() - 1];
    TreeNode* root = new TreeNode(rootValue);

    // 叶子节点
    if (postorder.size() == 1) return root;

    // 第三步:找切割点
    int delimiterIndex;
    for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
        if (inorder[delimiterIndex] == rootValue) break;
    }

    // 第四步:切割中序数组,得到 中序左数组和中序右数组
    // 第五步:切割后序数组,得到 后序左数组和后序右数组

    // 第六步
    root->left = traversal(中序左数组, 后序左数组);
    root->right = traversal(中序右数组, 后序右数组);

    return root;
}

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

我在数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)数组:这个循环可以转懵很多人! (opens new window)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
    if (inorder[delimiterIndex] == rootValue) break;
}

// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);

// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

题解:

class Solution {
public:
    TreeNode* traversal(vector<int>& preorder, vector<int>& inorder) {
        //1. 判断前序数组长度是否为0
        if (preorder.size() == 0)
        {
            return NULL;
        }
        //2. 前序数组的第一个元素就是当前结点
        int rootValue = preorder[0];
        TreeNode* root = new TreeNode(rootValue);
        //叶子结点
        if (preorder.size() == 1)
        {
            return root;
        }
        //3. 找切割点 找在中序数组中等于rootValue的位置
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++)
        {
            if (inorder[delimiterIndex] == rootValue)
            {
                break;
            }
        }
        //4. 切割中序数组
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end());
        //5. 切割前序数组
        vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + 1 + leftInorder.size());
        vector<int> rightPreorder(preorder.begin() + 1 + leftInorder.size(), preorder.end());
        //6. 递归
        root->left = traversal(leftPreorder, leftInorder);
        root->right = traversal(rightPreorder, rightInorder);

        return root;
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder)
    {
        if (preorder.size() == 0 || inorder.size() == 0)
        {
            return NULL;
        }
        return traversal(preorder, inorder);
    }
};

105. 从前序与中序遍历序列构造二叉树

递归法(每次都定义新的vector)

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

递归法(不重新定义新的vector而是建立索引,大大降低空间复杂度)

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;

        // 参数坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
    }
};

标签:遍历,return,cur,中序,delimiterIndex,二叉树,数组,序列,root
From: https://www.cnblogs.com/chaoyue-400/p/17095473.html

相关文章