from pathlib import Path
import numpy
import cv2
class Image:
def __init__(self, image):
self.image = cv2.imread(image, cv2.IMREAD_UNCHANGED)
@property
def width(self):
return self.image.shape[1]
@property
def height(self):
return self.image.shape[0]
class MatchImg(object):
def __init__(self, source, template, threshod=0.95):
"""
匹配一个图片,是否是另一个图片的局部图。source是大图,template是小图。即判断小图是否是大图的一部分。
:param source:
:param template:
:param threshod: 匹配程度,值越大,匹配程度要求就越高,最好不要太小
"""
self.source_img = source
self.template_img = template
self.threshod = threshod
def match_template(self, method=cv2.TM_CCOEFF_NORMED):
"""
返回小图左上角的点,在大图中的坐标。
:param method:
:return: list[tuple(x,y),...]
"""
try:
result = cv2.matchTemplate(self.source_img.image, self.template_img.image, method)
locations = numpy.where(result >= self.threshod)
res = list(zip(locations[1], locations[0])) # 返回的是匹配到的template左上角那个坐标点在image中的位置,可能有多个值
return res
except cv2.error as e:
print(e)
def get_template_position(self):
"""
获取小图在大图中,左上角和右下角的坐标
:return: List[list[x,y,x,y],...]
"""
res = self.match_template()
new_pos = []
for r in res:
r = list(r)
r.append(r[0] + self.template_img.width)
r.append(r[1] + self.template_img.height)
new_pos.append(r)
return new_pos
def get_img_center(self):
"""
获取大图中,每个小图中心点所在的坐标
:return:
"""
pos = self.match_template()
points = []
for p in pos:
x, y = p[0] + int(self.template_img.width / 2), p[1] + int(self.template_img.height / 2)
points.append((x, y))
return points
def load_image_file(path):
path = Path(path)
if not path.exists():
print('not exist file')
try:
image = Image(str(path))
return image
except cv2.error as e:
print(e)
big ='1.png'
small ='3.png'
img1 = load_image_file(big)
img2 = load_image_file(small)
process = MatchImg(img1, img2, 0.95)
points = process.get_img_center()
_list = []
for i in points:
_list.append(str(i[0])+','+str(i[1]))
file_handle=open('1.txt',mode='w')
for i in _list:
file_handle.write('%sn' % i)