首页 > 编程语言 >Python实现排序

Python实现排序

时间:2023-01-15 01:33:21浏览次数:45  
标签:index min Python max list1 实现 print 排序

冒泡排序

交换排序

  • 相邻元素两两比较大小,有必要则交换
  • 元素越小或越大,就会在数列中慢慢的交换并“浮”向顶端,如同水泡咕嘟咕嘟往上冒

核心算法

  • 排序算法,一般都实现为就地排序,输出为升序
  • 扩大有序区,减小无序区。图中红色部分就是增大的有序区,反之就是减小的无序区
  • 每一趟比较中,将无序区中所有元素依次两两比较,升序排序将大数调整到两数中的右侧
  • 每一趟比较完成,都会把这一趟的最大数推倒当前无序区的最右侧
c = 0
b = []
n=7
while True:
    a = input('输入数字:')
    a = int(a)
    b.append(a)
    c += 1
    if c == n:
        break
print('原数据序列为', b)
print('最大值为', max(b))
for j in range(n-1):
    for i in range(n-j-1):
        if b[i] >b[i+1]:
            b[i]=b[i]^b[i+1]
            b[i+1]=b[i]^b[i+1]
            b[i]=b[i]^b[i+1]
print('冒泡排序后的序列', b)

改进

n = 10
b=[9,8,1,2,3,4,5,6,7]
n=len(b)
print('原数据序列为', b)
for j in range(n - 1):
    d = True
    for i in range(n - j - 1):
        if b[i] > b[i + 1]:
            b[i] = b[i] ^ b[i + 1]
            b[i + 1] = b[i] ^ b[i + 1]
            b[i] = b[i] ^ b[i + 1]
            d = False
    if d:
        break
print('冒泡排序后的序列', b)
print('最大值为', b[-1])

综合顺序和降序

import datetime
import time
from random import sample
from functools import wraps


def timer(fn) :
    @wraps(fn)
    def wraper(*args, **kwargs) :
        now = time.time()
        wrap_fn = fn(*args, **kwargs)
        end = time.time() - now
        print("耗时", end, "秒")
        return wrap_fn

    return wraper


@timer
def sorted(list1, desc = False) :
    l = len(list1)
    count = 0
    if l > 0 :
        # 控制排序次数
        for i in range(l - 1) :
            flag = True
            # 控制比较次数
            for j in range(l - 1 - i) :
                if desc :
                    count += 1
                    # 当低序号的比高序号的小,就交换,完成降序
                    if list1[j] < list1[j + 1] :
                        list1[j], list1[j + 1] = list1[j + 1], list1[j]
                        flag = False
                else :
                    count += 1
                    # 当低序号的比高序号的大,就交换,完成顺序
                    if list1[j] > list1[j + 1] :
                        list1[j], list1[j + 1] = list1[j + 1], list1[j]
                        flag = False
            if flag :
                break
    return list1, count


if __name__ == '__main__' :
    # 获取10个100以内的混乱数据
    old_list = sample(range(100), k = 10)
    print(old_list)
    # [96, 31, 25, 38, 84, 11, 59, 10, 1, 61]
    print("*" * 30)
    list1, count1 = sorted(old_list)  # 一万数据顺序4.3580591678619385秒
    print("循环次数:", count1)
    print(list1)
    print("*" * 30)
    list2, count2 = sorted(old_list, True)  # 一万数据倒序5.853176116943359秒
    print("循环次数:", count2)
    print(list2)

总结

  • 冒泡法需要数据一趟趟比较
  • 可以设定一个标记判断此轮是否有数据交换发生,如果没有发生交换,可以结束排序,如果发生交换,继续下一轮排序
  • 最差的排序情况是,初始顺序与目标顺序完全相反,遍历次数1,...,n-1之和n(n-1)/2
  • 最好的排序情况是,初始顺序与目标顺序完全相同,遍历次数n-1
  • 时间复杂度O(n2)

选择排序

简单选择排序

每一趟两两比较大小,找出极值(极大值或极小值)并放置到有序区的位置

核心算法

  • 结果可为升序或降序排列,默认升序排列
  • 扩大有序区,减小无序区。图中红色部分就是增大的有序区,反之就是减小的无序区
  • 以降序为例
  • 相邻元素依次两两比较,获得每一次比较后的最大值,并记住此值的索引
  • 每一趟都从无序区中选择出最大值,然后交换到当前无序区最左端
a = [3, 5, 7, 0, 8, 9, 2, 1, 4, 6]
print(a)
for i in range(len(a) - 1):
    max_index = i
    for j in range(i + 1, len(a)):
        if a[j] > a[max_index]:
            max_index = j
    if max_index != i:
        a[max_index], a[i] = a[i], a[max_index]
print('-'*30,a,sep='\n')

二元选择排序

改进----》同时选择出每一趟的最大值和最小值,并分别固定到两端的有序区;减少迭代的趟数

from random import sample

a = sample(range(10), k=10)
# a = [1, 0, 4, 2, 9, 6, 3, 7, 5, 8]
print(a)
for i in range(len(a) // 2):
    max_index = i
    min_index = i
    for j in range(i + 1, len(a) - i):
        if a[j] > a[max_index]:
            max_index = j
        elif a[j] < a[min_index]:
            min_index = j
    if min_index == max_index:
        break
    if min_index != len(a) - i - 1:
        a[min_index], a[-i - 1] = a[-i - 1], a[min_index]
        if max_index == len(a) - i - 1:
            max_index=min_index
    if max_index != i :
        a[max_index], a[i] = a[i], a[max_index]
print(a, '-' * 32, sep='\n')

综合顺序倒序

import time
from random import sample
from functools import wraps


def timer(fn) :
    @wraps(fn)
    def wraper(*args, **kwargs) :
        now = time.time()
        wrap_fn = fn(*args, **kwargs)
        end = time.time() - now
        print("耗时", end, "秒")
        return wrap_fn

    return wraper


@timer
def sorted(l, desc = False) :
    le = len(l)
    count = 0
    # [96, 31, 25, 38, 84, 11, 59, 10, 1, 61]
    # 对半循环
    for i in range(le // 2) :
        # 假定最大值和最小值的序号都是每次遍历的的一个
        max = min = i
        for j in range(i + 1, le - i) :
            count += 1
            # 遍历取到此次遍历则最大和最小值的序号
            if l[j] > l[max] :
                max = j
            elif l[j] < l[min] :
                min = j
        # 如果最大值和最小值的序号一样,表示此次遍历的都是同样大小的,剩下的就不必遍历了
        if max == min :
            break
        # 如果是倒序
        if desc :
            # 判断最小的需要是不是在此次遍历的最后一位上
            if min != le - i - 1 :
                # 如果不是就交换位置
                l[min], l[-i - 1] = l[-i - 1], l[min]
                # 如果最大值又刚好是在交换位置前的最后一个位置上,就需要把最小值的序号给最大值序号
                if max == le - i - 1 :
                    max = min
            # 如果最大值序号不再此次遍历的第一个,就交换
            if max != i :
                l[max], l[i] = l[i], l[max]
        # 如果是顺序
        else :
            # 顺序逻辑与倒序刚好相反
            if max != le - i - 1 :
                l[max], l[-i - 1] = l[-i - 1], l[max]
                if min == le - i - 1 :
                    min = max
            if min != i :
                l[min], l[i] = l[i], l[min]
    return l, count


if __name__ == '__main__' :
    # 获取10个100以内的混乱数据
    old_list = sample(range(100), k = 10)
    print(old_list)
    # [96, 31, 25, 38, 84, 11, 59, 10, 1, 61]
    print("*" * 30)
    list1, count1 = sorted(old_list)  # 一万数据顺序1.127711296081543秒
    print("循环次数:", count1)
    print(list1)
    print("*" * 30)
    list2, count2 = sorted(old_list, True)  # 一万数据倒序0.7428731918334961
    print("循环次数:", count2)
    print(list2)

总结

  • 简单选择排序需要数据一趟趟比较,并在每一趟中发现极值
  • 没有办法知道当前这一趟是否已经达到排序要求,但是可以知道极值是否在目标索引位置上
  • 遍历次数1,...,n-1之和n(n-1)/2
  • 时间复杂度O(n2)
  • 减少了交换次数,提高了效率,性能略好于冒泡法

插入排序

每一趟都要把待排序数放到有序区中合适的插入位置

核心算法

  • 结果可为升序或降序排列,默认升序排列。以升序为例
  • 扩大有序区,减小无序区。图中绿色部分就是增大的有序区,黑色部分就是减小的无序区
  • 增加一个哨兵位,图中最左端红色数字,其中放置每一趟待比较数值
  • 将哨兵位数值与有序区数值从右到左依次比较,找到哨兵位数值合适的插入点

算法实现

  • 增加哨兵位

    • 为了方便,采用列表头部索引0位置插入哨兵位
    • 每一次从有序区最右端后的下一个数,即无序区最左端的数放到哨兵位
  • 比较与挪动

    • 从有序区最右端开始,从右至左依次与哨兵比较
    • 比较数比哨兵大,则右移一下,换下一个左边的比较数
    • 直到找到不大于哨兵的比较数,这是把哨兵插入到这个数右侧的空位即可

实现代码

a = [1, 6, 9, 5, 8]
for i in range(1, len(a)):
    c = i
    b = a[i]
    for j in range(i):
        if a[i - j - 1] > b:
            a[i - j] = a[i - j - 1]
            c = i - j - 1
    if c != i:
        a[c] = b
print(a)

综合顺序倒序

import time
from random import sample
from functools import wraps


# 计时装饰器,做简单的耗时测试
def timer(fn) :
    @wraps(fn)
    def wraper(*args, **kwargs) :
        now = time.time()
        wrap_fn = fn(*args, **kwargs)
        end = time.time() - now
        print("耗时", end, "秒")
        return wrap_fn

    return wraper


@timer
def sorted(l, desc = False) :
    le = len(l)
    # [31, 96, 25, 38, 84, 11, 59, 10, 1, 61]
    count = 0
    for i in range(1, le) :
        index = i
        sentry = l[i]
        for j in range(i) :
            if desc :
                count += 1
                if sentry > l[i - j - 1] :
                    l[index], l[i - j - 1] = l[i - j - 1], l[index]
                    index = i - j - 1
                else :
                    break
            else :
                count += 1
                if sentry < l[i - j - 1] :
                    l[index], l[i - j - 1] = l[i - j - 1], l[index]
                    index = i - j - 1
                else :
                    break
    return l, count


if __name__ == '__main__' :
    # 获取10个100以内的混乱数据
    old_list = sample(range(100), k = 10)
    print(old_list)
    # [96, 31, 25, 38, 84, 11, 59, 10, 1, 61]
    print("*" * 30)
    list1, count1 = sorted(old_list)  # 一万数据顺序3.3780910968780518秒
    print("循环次数:", count1)
    print(list1)
    print("*" * 30)
    list2, count2 = sorted(old_list, True)  # 一万数据倒序6.526946783065796秒
    print("循环次数:", count2)
    print(list2)

排序稳定性

  • 冒泡排序,相同数据不交换,稳定
  • 直接选择排序,相同数据前面的先选择到,排到有序区,不稳定
  • 直接插入排序,相同数据不移动,相对位置不变,稳定

总结

  • 最好情况,正好是升序排列,比较迭代n-1次
  • 最差情况,正好是降序排列,比较迭代1,2,...,n-1即 n(n-1)/2,数据移动非常多
  • 使用两层嵌套循环,时间复杂度O(n^2)
  • 稳定排序算法
    • 如果待排序序列R中两元素相等,即Ri等于Rj,且i < j ,那么排序后这个先后顺序不变,这种排序算法就称为稳定排序
    • 已经学习过的排序算法哪些是稳定排序,考虑1、1、2排序
  • 使用在小规模数据比较
  • 优化
    • 如果比较操作耗时大的话,可以采用二分查找来提高效率,即二分查找插入排序

标签:index,min,Python,max,list1,实现,print,排序
From: https://www.cnblogs.com/guangdelw/p/17052952.html

相关文章

  • Python闭包和装饰器的学习
    之前看了不少的帖子,总是看了这篇帖子说的理解了,换篇帖子说的又不理解了,把人弄晕了,究其原因还是因为没有把底层原理理解。这两个概念总是放在一起说,两者之间肯定是有关系的......
  • python def函数总结
    简单无参函数编写脚本test1.pydefregister_user():"""docstring"""#描述函数的功能print("Welcome!")register_user()#调用函数执行脚本test1.py输出结果We......
  • Python之集合操作举例
    #集合的操作(Set、frozenset)#集合特点:无序、元素不可重复、执行效率高但是比列表占用空间大,空间换时间s={"a","b","c"}s=set("abcd")print(s)#{'d','b',......
  • Python树与树算法
    Python树与树算法树的概念树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具......
  • Python-训练简单的机器学习分类算法
    Python-训练简单的机器学习分类算法人工神经元为了设计人工智能,人们尝试模仿生物神经元,神经元是大脑中连接起来参与化学和电信号处理与传输的神经细胞,麦库洛和皮兹(MCP)把......
  • 【python】re模块
    定义:re模块称为正则表达式;作用:创建一个"规则表达式",用于验证和查找符合规则的文本,广泛用于各种搜索引擎、账户密码的验证等;预定义字符\d匹配所有的十进制数字0-9......
  • 【Python】ass双语字幕时间对齐(手动)
    给定一份ass格式的双语歌词文件,其中日语已经对齐了正确时间,汉语的时间还是乱的。把日语的时间用到汉语上面。日语字幕如下(节选部分):Dialogue:0,0:00:02.98,0:00:08.23,......
  • Collectors.groupingBy分组后的排序问题
    Collectors.groupingBy分组后的排序问题https://blog.csdn.net/aiji7208/article/details/101291632?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.n......
  • AcWing 786.第k个数(快速排序)
    [原链接](https://www.acwing.com/problem/content/788/题目#include<cstdio>#include<iostream>#include<cstdlib>usingnamespacestd;inta[100100];voidqu......
  • python简单处理http请求
    代码块response=requests.get(url=url,headers=headers,params=params)html=etree.HTML(response.text)pythonrequest库requests.get()意为获取网页,对应HTTP中......