转载:https://blog.csdn.net/weixin_43455443/article/details/115343995
4、通过java代码连接hive on spark,使用hive-jdbc
引入pom文件
<dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>2.1.1</version> </dependency>
import java.sql.*; import java.util.Scanner; public class HiveJDBC { public static void main(String[] args) throws ClassNotFoundException, SQLException, InterruptedException { String driverName = "org.apache.hive.jdbc.HiveDriver"; String url = "jdbc:hive2://hadoop162:10000"; String dbName = "default"; Connection con = null; Statement state = null; ResultSet res = null; Class.forName(driverName); //这里必须指定用户名和密码,密码可以为空字符串,如果不指定则或报错启动sparksession失败 con= DriverManager.getConnection(url+"/"+dbName,"hive",""); state = con.createStatement(); Scanner scan = new Scanner(System.in); String sql=null; //创建临时udf,可以不创建 state.execute("create temporary function pinjie as 'com.topnet.MyUDF' using jar 'hdfs:///user/hive/udf/hiveUDF-1.0.jar'"); while (true){ System.out.println("亲输入sql:"); if(scan.hasNext()){ sql=scan.nextLine(); } System.out.println(sql); res = state.executeQuery(sql); while (res.next()) { System.out.println(res.getString(1)); } Thread.sleep(100); } } }
5、运行sql的执行日志获取
使用hive-jdbc运行时,如果想获取sql的执行日志,则可以通过这几个方法获取运行的日志信息。List<String> getQueryLog(),List<String> getQueryLog(boolean incremental, int fetchSize)和boolean hasMoreLogs()三个方法,在进行hive的sql查询时,有时一个sql可能需要运行很长时间,借助这三个方法,还可以实时显示sql 的查询进度。
想要实时的显示sql查询进度,则需要再开启一个线程进行日志获取打印。
public class HiveJDBC { public static void main(String[] args) throws ClassNotFoundException, SQLException, InterruptedException { Logger log = LoggerFactory.getLogger(HiveJDBC.class); String driverName = "org.apache.hive.jdbc.HiveDriver"; String url = "jdbc:hive2://hadoop162:10000"; String dbName = "default"; Connection con = null; Statement state = null; ResultSet res = null; Class.forName(driverName); //这里必须指定用户名和密码,密码可以为空字符串,如果不指定则或报错启动sparksession失败 con = DriverManager.getConnection(url + "/" + dbName, "hive", ""); state = con.createStatement(); Scanner scan = new Scanner(System.in); String sql = null; //开启线程获取sql执行日志 Thread logThread = new Thread(new HiveLog((HiveStatement) state)); logThread.setDaemon(true); logThread.start(); //注册临时udf函数,可以不创建 state.execute("create temporary function pinjie as 'com.topnet.MyUDF' using jar 'hdfs:///user/hive/udf/hiveUDF-1.0.jar'"); while (true) { System.out.println("亲输入sql:"); if (scan.hasNext()) { sql = scan.nextLine(); } log.error("打印日志sql语句:" + sql); res = state.executeQuery(sql); while (res.next()) { System.out.println(res.getString(1)); } Thread.sleep(100); } } static class HiveLog extends Thread { private final HiveStatement state; HiveLog(HiveStatement state) { this.state = state; } private void updateQueryLog() { try { List<String> queryLogs = state.getQueryLog(); for (String log : queryLogs) { System.out.println("进度信息-->" + log); } } catch (Exception e) { } } @Override public void run() { try { //循环不断的获取sql执行的日志 while (true) { if (state.hasMoreLogs()) { updateQueryLog(); } Thread.sleep(100); } } catch (InterruptedException e) { e.getStackTrace(); } } } }
标签:jdbc,java,String,System,hive,state,sql From: https://www.cnblogs.com/wangbin2188/p/16646668.html