首页 > 编程语言 >常见大O运行时间·Python例子

常见大O运行时间·Python例子

时间:2023-01-06 12:33:31浏览次数:47  
标签:elements return Python 常见 list 算法 例子 order def

常见大O运行时间·Python例子


O(1)

O(1) 描述了一种无论输入数据集的大小如何总是在相同的时间(或空间)内运行的算法。

def is_first_element_null(order_list):
    return order_list[0] is None

O(log n)

O(log n) 表示一种性能与输入数据集大小成对数的算法。一个例子为二分查找:

def binary_search(order_list, item):
    low = 0
    high = len(order_list) - 1

    while low <= high:
        mid = int((low + high) / 2)
        guess = order_list[mid]
        if guess == item:
            return mid
        if guess < item:
            low = mid + 1
        else:
            high = mid - 1
    return None

O(n)

O(n) 描述了一种性能线性增长并且与输入数据集的大小成正比的算法。下面的示例还演示了大 O 如何支持最坏情况的性能方案,在循环的任何一个迭代期间都可以找到匹配的字符串,并且函数将提前返回,但是大 O 表示法将始终假定算法将执行最大的迭代次数。

def contains_value(elements, value):
    for element in elements:
        if element == value:
            return True
    return False

O(n²)

O(n²) 表示一种性能与输入数据集大小的平方成正比的算法,常见于涉及数据集嵌套迭代的算法中。更深的嵌套迭代将导致 O(n³)、O(n⁴) 等。

def contains_duplicates(elements):
    for i in range(len(elements)):
        for j in range(len(elements)):
            if i == j:
                continue
            if elements[i] == elements[j]:
                return True
    return False

O(2^n)

O(2^n) 表示一种随着对输入数据集的每次加法而增长加倍的算法。O(2^n) 函数的增长曲线是指数 —— 从非常小的开始,然后是急剧上升。O(2^n) 函数的一个例子是 Fibonacci 数的递归计算:

def fibonacci(number):
    if number <= 1:
        return number
    return fibonacci(number - 2) + fibonacci(number - 1) 

标签:elements,return,Python,常见,list,算法,例子,order,def
From: https://www.cnblogs.com/dromer/p/17030093.html

相关文章