首页 > 编程语言 >Python:numpy模块最详细的教程

Python:numpy模块最详细的教程

时间:2023-01-04 19:58:05浏览次数:69  
标签:教程 Python 元素 arr np 数组 print numpy

一、numpy简介

numpy官方文档:https://docs.scipy.org/doc/numpy/reference/?v=20190307135750

numpy是Python的一种开源的数值计算扩展库。这种库可用来存储和处理大型numpy数组,比Python自身的嵌套列表结构要高效的多(该结构也可以用来表示numpy数组)。

numpy库有两个作用:

  • 区别于list列表,提供了数组操作、数组运算、以及统计分布和简单的数学模型
  • 计算速度快,甚至要由于python内置的简单运算,使得其成为pandas、sklearn等模块的依赖包。高级的框架如TensorFlow、PyTorch等,其数组操作也和numpy非常相似。

二、为什么用numpy

lis1 = [1, 2, 3]
lis2 = [4, 5, 6]
lis1
[1, 2, 3]
lis2
[4, 5, 6]

如果我们想让lis1 * lis2得到一个结果为lis_res = [4, 10, 18],非常复杂。

三、创建numpy数组

numpy数组即numpy的ndarray对象,创建numpy数组就是把一个列表传入np.array()方法。

import numpy as np
# np.array? 相当于pycharm的ctrl+鼠标左键

#1. 创建一维的ndarray对象
arr = np.array([1, 2, 3])
print(arr, type(arr))
[1 2 3] <class 'numpy.ndarray'>

#2. 创建二维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6]]))
[[1 2 3]
 [4 5 6]]

#3. 创建三维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
[[1 2 3]
 [4 5 6]
 [7 8 9]]

四、numpy数组的常用属性

属性 解释
T 数组的转置(对高维数组而言)
dtype 数组元素的数据类型
size 数组元素的个数
ndim 数组的维数
shape 数组的维度大小(以元组形式)
astype 类型转换

dtype种类:bool_, int(8,16,32,64), float(16,32,64)

arr = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
print(arr)
[[1. 2. 3.]
 [4. 5. 6.]]

print(arr.T)
[[1. 4.]
 [2. 5.]
 [3. 6.]]

print(arr.dtype)
float32

arr = arr.astype(np.int32)
print(arr.dtype)
print(arr)
int32
[[1 2 3]
 [4 5 6]]

print(arr.size)
6

print(arr.ndim)
2

print(arr.shape)
(2, 3)

五、获取numpy数组的行列数

由于numpy数组是多维的,对于二维的数组而言,numpy数组就是既有行又有列。

注意:对于numpy我们一般多讨论二维的数组。

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
[[1 2 3]
 [4 5 6]]

#1. 获取numpy数组的行和列构成的数组
print(arr.shape)
(2, 3)

#2. 获取numpy数组的行
print(arr.shape[0])
2

#3. 获取numpy数组的列
print(arr.shape[1])
3

六、切割numpy数组

切分numpy数组类似于列表的切割,但是与列表的切割不同的是,numpy数组的切割涉及到行和列的切割,但是两者切割的方式都是从索引0开始,并且取头不取尾。

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

#1. 取所有元素
print(arr[:, :])
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

#2. 取第一行的所有元素
print(arr[:1, :])
[[1 2 3 4]]

#3. 取第一行的所有元素
print(arr[0, [0, 1, 2, 3]])
[1 2 3 4]

#4. 取第一列的所有元素
print(arr[:, :1])
[[1]
 [5]
 [9]]

#5. 取第一列的所有元素
print(arr[(0, 1, 2), 0])
[1 5 9]

#6. 取第一行第一列的元素
print(arr[(0, 1, 2), 0])
[1 5 9]

#7. 取第一行第一列的元素
print(arr[0, 0])
1

#8. 取大于5的元素,返回一个数组
print(arr[arr > 5])
[ 6  7  8  9 10 11 12]

#9. numpy数组按运算符取元素的原理,即通过arr > 5生成一个布尔numpy数组
print(arr > 5)
[[False False False False]
 [False  True  True  True]
 [ True  True  True  True]]

七、numpy数组元素替换

numpy数组元素的替换,类似于列表元素的替换,并且numpy数组也是一个可变类型的数据,即如果对numpy数组进行替换操作,会修改原numpy数组的元素,所以下面我们用.copy()方法举例numpy数组元素的替换。

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

#1. 取第一行的所有元素,并且让第一行的元素都为0
arr1 = arr.copy()
arr1[:1, :] = 0
print(arr1)
[[ 0  0  0  0]
 [ 5  6  7  8]
 [ 9 10 11 12]]

#2. 取所有大于5的元素,并且让大于5的元素为0
arr2 = arr.copy()
arr2[arr > 5] = 0
print(arr2)
[[1 2 3 4]
 [5 0 0 0]
 [0 0 0 0]]

#3. 对numpy数组清零
arr3 = arr.copy()
arr3[:, :] = 0
print(arr3)
[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]

八、numpy数组的合并

arr1 = np.array([[1, 2], [3, 4], [5, 6]])
print(arr1)
[[1 2]
 [3 4]
 [5 6]]

arr2 = np.array([[7, 8], [9, 10], [11, 12]])
print(arr2)
[[ 7  8]
 [ 9 10]
 [11 12]]

#1. 合并两个numpy数组的行,注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行,其中hstack的h表示horizontal水平的
print(np.hstack((arr1, arr2)))
[[ 1  2  7  8]
 [ 3  4  9 10]
 [ 5  6 11 12]]

#2. 合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
print(np.concatenate((arr1, arr2), axis=1))
[[ 1  2  7  8]
 [ 3  4  9 10]
 [ 5  6 11 12]]

#3. 合并两个numpy数组的列,注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列,其中vstack的v表示vertical垂直的
print(np.vstack((arr1, arr2)))
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]]
# Python学习交流群:711312441
#4. 合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
print(np.concatenate((arr1, arr2), axis=0))
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]]

九、通过函数创建numpy数组

方法 详解
array() 将列表转换为数组,可选择显式指定dtype
arange() range的numpy版,支持浮点数
linspace() 类似arange(),第三个参数为数组长度
zeros() 根据指定形状和dtype创建全0数组
ones() 根据指定形状和dtype创建全1数组
eye() 创建单位矩阵
empty() 创建一个元素全随机的数组
reshape() 重塑形状

1 array

arr = np.array([1, 2, 3])
print(arr)
[1 2 3]

2 arange

#1. 构造0-9的ndarray数组
print(np.arange(10))
[0 1 2 3 4 5 6 7 8 9]

#2. 构造1-4的ndarray数组
print(np.arange(1, 5))
[1 2 3 4]

#3. 构造1-19且步长为2的ndarray数组
print(np.arange(1, 20, 2))
[ 1  3  5  7  9 11 13 15 17 19]

3 linspace/logspace

#1. 构造一个等差数列,取头也取尾,从0取到20,取5个数
print(np.linspace(0, 20, 5))
[ 0.  5. 10. 15. 20.]

#2. 构造一个等比数列,从10**0取到10**20,取5个数
print(np.logspace(0, 20, 5))
[1.e+00 1.e+05 1.e+10 1.e+15 1.e+20]

4 zeros/ones/eye/empty

#1. 构造3*4的全0numpy数组
print(np.zeros((3, 4)))
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

#2. 构造3*4的全1numpy数组
print(np.ones((3, 4)))
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

#3. 构造3个主元的单位numpy数组
print(np.eye(3))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

#4. 构造一个4*4的随机numpy数组,里面的元素是随机生成的
print(np.empty((4, 4)))

[[ 2.31584178e+077 -1.49457545e-154  3.95252517e-323  0.00000000e+000]
 [ 0.00000000e+000  0.00000000e+000  0.00000000e+000  0.00000000e+000]
 [ 0.00000000e+000  0.00000000e+000  0.00000000e+000  0.00000000e+000]
 [ 0.00000000e+000  0.00000000e+000  1.29074055e-231  1.11687366e-308]]

5 reshape

arr = np.ones([2, 2], dtype=int)
print(arr.reshape(4, 1))
[[1]
 [1]
 [1]
 [1]]

6 fromstring/fromfunction(了解)

# fromstring通过对字符串的字符编码所对应ASCII编码的位置,生成一个ndarray对象
s = 'abcdef'
# np.int8表示一个字符的字节数为8
print(np.fromstring(s, dtype=np.int8))
# [ 97  98  99 100 101 102]


/Applications/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  after removing the cwd from sys.path.


def func(i, j):
    """其中i为numpy数组的行,j为numpy数组的列"""
    return i * j
# 使用函数对numpy数组元素的行和列的索引做处理,得到当前元素的值,索引从0开始,并构造一个3*4的numpy数组
print(np.fromfunction(func, (3, 4)))

[[0. 0. 0. 0.]
 [0. 1. 2. 3.]
 [0. 2. 4. 6.]]

十、numpy数组运算

运算符 说明
+ 两个numpy数组对应元素相加
- 两个numpy数组对应元素相减
* 两个numpy数组对应元素相乘
/ 两个numpy数组对应元素相除,如果都是整数则取商
% 两个numpy数组对应元素相除后取余数
**n 单个numpy数组每个元素都取n次方,如**2:每个元素都取平方
arrarr1 = np.array([[1, 2], [3, 4], [5, 6]])
print(arr1)
[[1 2]
 [3 4]
 [5 6]]

arr2 = np.array([[7, 8], [9, 10], [11, 12]])
print(arr2)
[[ 7  8]
 [ 9 10]
 [11 12]]

print(arr1 + arr2)
[[ 8 10]
 [12 14]
 [16 18]]

print(arr1**2)
[[ 1  4]
 [ 9 16]
 [25 36]]

十一、numpy数组运算函数

numpy数组函数 详解
np.sin(arr) 对numpy数组arr中每个元素取正弦,sin(x)sin(x)
np.cos(arr) 对numpy数组arr中每个元素取余弦,cos(x)cos(x)
np.tan(arr) 对numpy数组arr中每个元素取正切,tan(x)tan(x)
np.arcsin(arr) 对numpy数组arr中每个元素取反正弦,arcsin(x)arcsin(x)
np.arccos(arr) 对numpy数组arr中每个元素取反余弦,arccos(x)arccos(x)
np.arctan(arr) 对numpy数组arr中每个元素取反正切,arctan(x)arctan(x)
np.exp(arr) 对numpy数组arr中每个元素取指数函数,exex
np.sqrt(arr) 对numpy数组arr中每个元素开根号x−−√x

一元函数:abs, sqrt, exp, log, ceil, floor, rint, trunc, modf, isnan, isinf, cos, sin, tan

二元函数:add, substract, multiply, divide, power, mod, maximum, mininum

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

#1. 对numpy数组的所有元素取正弦
print(np.sin(arr))

[[ 0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825]
 [ 0.41211849 -0.54402111 -0.99999021 -0.53657292]]

#2. 对numpy数组的所有元素开根号
print(np.sqrt(arr))

[[1.         1.41421356 1.73205081 2.        ]
 [2.23606798 2.44948974 2.64575131 2.82842712]
 [3.         3.16227766 3.31662479 3.46410162]]

#3. 对numpy数组的所有元素取反正弦,如果元素不在定义域内,则会取nan值
print(np.arcsin(arr * 0.1))
[[0.10016742 0.20135792 0.30469265 0.41151685]
 [0.52359878 0.64350111 0.7753975  0.92729522]
 [1.11976951 1.57079633        nan        nan]]

** /Applications/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in arcsin
  
#4. 判断矩阵元素中是否含有np.nan值
print(np.isnan(arr))
# [[False False False]
# [False False False]]

十二、numpy数组矩阵化

1 numpy数组的转置

numpy数组的转置,相当于numpy数组的行和列互换。

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
[[1 2 3]
 [4 5 6]]

print(arr.transpose())
[[1 4]
 [2 5]
 [3 6]]

print(arr.T)
[[1 4]
 [2 5]
 [3 6]]

2 numpy数组的逆

numpy数组行和列相同时,numpy数组才可逆。

arr = np.array([[1, 2, 3], [4, 5, 6], [9, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [9 8 9]]

print(np.linalg.inv(arr))
[[ 0.5        -1.          0.5       ]
 [-3.          3.         -1.        ]
 [ 2.16666667 -1.66666667  0.5       ]]

# 单位numpy数组的逆是单位numpy数组本身
arr = np.eye(3)
print(arr)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

print(np.linalg.inv(arr))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

十三、numpy数组数学和统计方法

方法 详解
sum 求和
cumsum 累加求和
mean 求平均数
std 求标准差
var 求方差
min 求最小值
max 求最大值
argmin 求最小值索引
argmax 求最大值索引
sort 排序

1 最大最小值

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]
#1. 获取numpy数组所有元素中的最大值
print(arr.max())
# 9
# Python学习交流群:711312441
#2. 获取numpy数组所有元素中的最小值
print(arr.min())
# 1

#3. 获取举着每一行的最大值
print(arr.max(axis=0))
# [7 8 9]

#4. 获取numpy数组每一列的最大值
print(arr.max(axis=1))
# [3 6 9]

#5. 获取numpy数组最大元素的索引位置
print(arr.argmax(axis=1))
# [2 2 2]

2 平均值

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]

#1. 获取numpy数组所有元素的平均值
print(arr.mean())
# 5.0

#2. 获取numpy数组每一列的平均值
print(arr.mean(axis=0))
# [4. 5. 6.]

#3. 获取numpy数组每一行的平均值
print(arr.mean(axis=1))
# [2. 5. 8.]

3 方差

方差公式为

mean(|x−x.mean()|2)mean(|x−x.mean()|2)

其中x为numpy数组。

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]

#1. 获取numpy数组所有元素的方差
print(arr.var())
# 6.666666666666667

#2. 获取numpy数组每一列的元素的方差
print(arr.var(axis=0))
# [6. 6. 6.]

#3. 获取numpy数组每一行的元素的方差
print(arr.var(axis=1))
# [0.66666667 0.66666667 0.66666667]

4 标准差

标准差公式为

mean|x−x.mean()|2−−−−−−−−−−−−−−−−−√=x.var()−−−−−−√mean|x−x.mean()|2=x.var()

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]
# Python学习交流群:711312441
#1. 获取numpy数组所有元素的标准差
print(arr.std())
# 2.581988897471611

#2. 获取numpy数组每一列的标准差
print(arr.std(axis=0))
# [2.44948974 2.44948974 2.44948974]

#3. 获取numpy数组每一行的标准差
print(arr.std(axis=1))
[0.81649658 0.81649658 0.81649658]

5 中位数

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]

#1. 获取numpy数组所有元素的中位数
print(np.median(arr))
5.0

#2. 获取numpy数组每一列的中位数
print(np.median(arr, axis=0))
[4. 5. 6.]

#3. 获取numpy数组每一行的中位数
print(np.median(arr, axis=1))
[2. 5. 8.]

6 numpy数组求和

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr)

[[1 2 3]
 [4 5 6]
 [7 8 9]]

#1. 对numpy数组的每一个元素求和
print(arr.sum())
# 45

#2. 对numpy数组的每一列求和
print(arr.sum(axis=0))
# [12 15 18]

#3. 对numpy数组的每一行求和
print(arr.sum(axis=1))
# [ 6 15 24]

7 累加和

arr = np.array([1, 2, 3, 4, 5])
print(arr)
# [1 2 3 4 5]

# 第n个元素为前n-1个元素累加和
print(arr.cumsum())
# [ 1  3  6 10 15]

十四、numpy.random生成随机数

函数名称 函数功能 参数说明
rand(d0,d1,⋯,dnd0,d1,⋯,dn) 产生均匀分布的随机数 dndn为第n维数据的维度
randn(d0,d1,⋯,dnd0,d1,⋯,dn) 产生标准正态分布随机数 dndn为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值; size:数据个数
random_sample([size]) 在[0,1)[0,1)内产生随机数 size为随机数的shape,可以为元祖或者列表
choice(a[, size]) 从arr中随机选择指定数据 arr为1维数组;size为数组形状
uniform(low,high [,size]) 给定形状产生随机数组 low为最小值;high为最大值,size为数组形状
shuffle(a) 与random.shuffle相同 a为指定数组
#1. RandomState()方法会让数据值随机一次,之后都是相同的数据
rs = np.random.RandomState(1)
print(rs.rand(10))

[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
 1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01
 3.96767474e-01 5.38816734e-01]


#2. 构造3*4的均匀分布的numpy数组
# seed()方法会让数据值随机一次,之后都是相同的数据
np.random.seed(1)
print(np.random.rand(3, 4))

[[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01]
 [1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01]
 [3.96767474e-01 5.38816734e-01 4.19194514e-01 6.85219500e-01]]


#3. 构造3*4*5的均匀分布的numpy数组
print(np.random.rand(3, 4, 5))
[[[0.20445225 0.87811744 0.02738759 0.67046751 0.4173048 ]
  [0.55868983 0.14038694 0.19810149 0.80074457 0.96826158]
  [0.31342418 0.69232262 0.87638915 0.89460666 0.08504421]
  [0.03905478 0.16983042 0.8781425  0.09834683 0.42110763]]

 [[0.95788953 0.53316528 0.69187711 0.31551563 0.68650093]
  [0.83462567 0.01828828 0.75014431 0.98886109 0.74816565]
  [0.28044399 0.78927933 0.10322601 0.44789353 0.9085955 ]
  [0.29361415 0.28777534 0.13002857 0.01936696 0.67883553]]

 [[0.21162812 0.26554666 0.49157316 0.05336255 0.57411761]
  [0.14672857 0.58930554 0.69975836 0.10233443 0.41405599]
  [0.69440016 0.41417927 0.04995346 0.53589641 0.66379465]
  [0.51488911 0.94459476 0.58655504 0.90340192 0.1374747 ]]]

#4. 构造3*4的正态分布的numpy数组
print(np.random.randn(3, 4))

[[ 0.30017032 -0.35224985 -1.1425182  -0.34934272]
 [-0.20889423  0.58662319  0.83898341  0.93110208]
 [ 0.28558733  0.88514116 -0.75439794  1.25286816]]

#5. 构造取值为1-5内的10个元素的ndarray数组
print(np.random.randint(1, 5, 10))

[1 1 1 2 3 1 2 1 3 4]

#6. 构造取值为0-1内的3*4的numpy数组
print(np.random.random_sample((3, 4)))

[[0.62169572 0.11474597 0.94948926 0.44991213]
 [0.57838961 0.4081368  0.23702698 0.90337952]
 [0.57367949 0.00287033 0.61714491 0.3266449 ]]

#7. 随机选取arr中的两个元素
arr = np.array([1, 2, 3])
print(np.random.choice(arr, size=2))

[1 3]

arr = np.random.uniform(1, 5, (2, 3))
print(arr)

[[4.72405173 3.30633687 4.35858086]
 [3.49316845 2.29806999 3.91204657]]

np.random.shuffle(arr)
print(arr)

[[3.49316845 2.29806999 3.91204657]
 [4.72405173 3.30633687 4.35858086]]

标签:教程,Python,元素,arr,np,数组,print,numpy
From: https://www.cnblogs.com/djdjdj123/p/17025837.html

相关文章

  • python3实现字符串的全排列的方法(无重复字符)两种解决方法
    抛出问题求任意一个字符串的全排列组合,例如a='123',输出123,132,213,231,312,321。(暂时假定字符串没有重复)解决方案目前有两种解决的方法方法一:defstr_sort(s=''):if......
  • python中可以处理word文档的模块:docx模块
    一.docx模块Python可以利用python-docx模块处理word文档,处理方式是面向对象的。也就是说python-docx模块会把word文档,文档中的段落、文本、字体等都看做对象,对对象进行处......
  • 5分钟快速掌握 Python 定时任务框架
    APScheduler简介在实际开发中我们经常会碰上一些重复性或周期性的任务,比如像每天定时爬取某个网站的数据、一定周期定时运行代码训练模型等,类似这类的任务通常需要我们手......
  • pve虚拟机Vmware安装教程
    1ProXmoX-VE简介PVE(ProXmoXVE)是一个开源的虚拟化管理软件,类似ESXI,用户可以通过网页的方式来管理服务器,使用kvm以及lxc技术运行虚拟机,同时也提供了一些集群和HA等功能。......
  • Python网络编程之TCP 客户端程序开发
    一、开发TCP客户端程序开发步骤回顾创建客户端套接字对象和服务端套接字建立连接发送数据接收数据关闭客户端套接字二、socket类的介绍导入socket模块 importsocket......
  • python脚本调用CANoe COM Server接口
    《CANoe开发入门到精通》源码:#-----------------------------------------------------------------------------#Example:TestFeatureSetviaPython##This......
  • (15)Python识别文字,tesseract包
    使用python提供的tesseract包识别图片中的文字,但效果一般我的是在arch中实现的文章目录​​1、安装tesseract和英文和中文语言包​​​​2、安装必要的第三方库​​​​3、......
  • Typora下载安装教程
    typora是一款非常好用的Markdown编辑器和阅读器,相信做技术的的同学都不陌生,其具有小巧、快速、实时预览等特点,是一款提升生产力的工具。下载typora安装包&pojie包下载:关......
  • python爬取银行存款利率数据
    三年疫情让各行各业的经济都下滑了很多,手里有钱的人都会很谨慎地进行一些投资项目。2023新年来临,银行存款利率也出现一波调整,近期多家中小银行对定期存款挂牌利率进行下调。......
  • 软件开发入门教程网 Search之C++ 动态内存
       C++基本的输入输出   ......