首页 > 编程语言 >C++ zip压缩库使用

C++ zip压缩库使用

时间:2022-12-29 16:04:29浏览次数:41  
标签:code zip 压缩 tree ts C++ state length define


  • 这个压缩库,主要是用来解压和压缩相关文件使用,好处就是引入比较方便,而且极其易使用,方便用户操作。
  • 首先是引入这四个文件,相关代码如下:
  • 首先是​​zip.h​​头文件
#ifndef _zip_H
#define _zip_H


// ZIP functions -- for creating zip files
// This file is a repackaged form of the Info-Zip source code available
// at www.info-zip.org. The original copyright notice may be found in
// zip.cpp. The repackaging was done by Lucian Wischik to simplify and
// extend its use in Windows/C++. Also to add encryption and unicode.


#ifndef _unzip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that is being created

typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.



HZIP CreateZip(const TCHAR *fn, const char *password);
HZIP CreateZip(void *buf,unsigned int len, const char *password);
HZIP CreateZipHandle(HANDLE h, const char *password);
// CreateZip - call this to start the creation of a zip file.
// As the zip is being created, it will be stored somewhere:
// to a pipe: CreateZipHandle(hpipe_write);
// in a file (by handle): CreateZipHandle(hfile);
// in a file (by name): CreateZip("c:\\test.zip");
// in memory: CreateZip(buf, len);
// or in pagefile memory: CreateZip(0, len);
// The final case stores it in memory backed by the system paging file,
// where the zip may not exceed len bytes. This is a bit friendlier than
// allocating memory with new[]: it won't lead to fragmentation, and the
// memory won't be touched unless needed. That means you can give very
// large estimates of the maximum-size without too much worry.
// As for the password, it lets you encrypt every file in the archive.
// (This api doesn't support per-file encryption.)
// Note: because pipes don't allow random access, the structure of a zipfile
// created into a pipe is slightly different from that created into a file
// or memory. In particular, the compressed-size of the item cannot be
// stored in the zipfile until after the item itself. (Also, for an item added
// itself via a pipe, the uncompressed-size might not either be known until
// after.) This is not normally a problem. But if you try to unzip via a pipe
// as well, then the unzipper will not know these things about the item until
// after it has been unzipped. Therefore: for unzippers which don't just write
// each item to disk or to a pipe, but instead pre-allocate memory space into
// which to unzip them, then either you have to create the zip not to a pipe,
// or you have to add items not from a pipe, or at least when adding items
// from a pipe you have to specify the length.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.


ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn);
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len);
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h);
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len);
ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn);
// ZipAdd - call this for each file to be added to the zip.
// dstzn is the name that the file will be stored as in the zip file.
// The file to be added to the zip can come
// from a pipe: ZipAddHandle(hz,"file.dat", hpipe_read);
// from a file: ZipAddHandle(hz,"file.dat", hfile);
// from a filen: ZipAdd(hz,"file.dat", "c:\\docs\\origfile.dat");
// from memory: ZipAdd(hz,"subdir\\file.dat", buf,len);
// (folder): ZipAddFolder(hz,"subdir");
// Note: if adding an item from a pipe, and if also creating the zip file itself
// to a pipe, then you might wish to pass a non-zero length to the ZipAddHandle
// function. This will let the zipfile store the item's size ahead of the
// compressed item itself, which in turn makes it easier when unzipping the
// zipfile from a pipe.

ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len);
// ZipGetMemory - If the zip was created in memory, via ZipCreate(0,len),
// then this function will return information about that memory block.
// buf will receive a pointer to its start, and len its length.
// Note: you can't add any more after calling this.

ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.

unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.



// These are the result codes:
#define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK 0x0000FF00
#define ZR_NODUPH 0x00000100 // couldn't duplicate the handle
#define ZR_NOFILE 0x00000200 // couldn't create/open the file
#define ZR_NOALLOC 0x00000300 // failed to allocate some resource
#define ZR_WRITE 0x00000400 // a general error writing to the file
#define ZR_NOTFOUND 0x00000500 // couldn't find that file in the zip
#define ZR_MORE 0x00000600 // there's still more data to be unzipped
#define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile
#define ZR_READ 0x00000800 // a general error reading the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS 0x00010000 // general mistake with the arguments
#define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE 0x00030000 // the memory size is too small
#define ZR_FAILED 0x00040000 // the thing was already failed when you called this function
#define ZR_ENDED 0x00050000 // the zip creation has already been closed
#define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped
#define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK 0xFF000000
#define ZR_NOTINITED 0x01000000 // initialisation didn't work
#define ZR_SEEK 0x02000000 // trying to seek in an unseekable file
#define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed
#define ZR_FLATE 0x05000000 // an internal error in the de/inflation code






// e.g.
//
// (1) Traditional use, creating a zipfile from existing files
// HZIP hz = CreateZip("c:\\simple1.zip",0);
// ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
// ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
// CloseZip(hz);
//
// (2) Memory use, creating an auto-allocated mem-based zip file from various sources
// HZIP hz = CreateZip(0,100000, 0);
// // adding a conventional file...
// ZipAdd(hz,"src1.txt", "c:\\src1.txt");
// // adding something from memory...
// char buf[1000]; for (int i=0; i<1000; i++) buf[i]=(char)(i&0x7F);
// ZipAdd(hz,"file.dat", buf,1000);
// // adding something from a pipe...
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,NULL,0);
// HANDLE hthread = CreateThread(0,0,ThreadFunc,(void*)hwrite,0,0);
// ZipAdd(hz,"unz3.dat", hread,1000); // the '1000' is optional.
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hthread); CloseHandle(hread);
// ... meanwhile DWORD WINAPI ThreadFunc(void *dat)
// { HANDLE hwrite = (HANDLE)dat;
// char buf[1000]={17};
// DWORD writ; WriteFile(hwrite,buf,1000,&writ,NULL);
// CloseHandle(hwrite);
// return 0;
// }
// // and now that the zip is created, let's do something with it:
// void *zbuf; unsigned long zlen; ZipGetMemory(hz,&zbuf,&zlen);
// HANDLE hfz = CreateFile("test2.zip",GENERIC_WRITE,0,0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,0);
// DWORD writ; WriteFile(hfz,zbuf,zlen,&writ,NULL);
// CloseHandle(hfz);
// CloseZip(hz);
//
// (3) Handle use, for file handles and pipes
// HANDLE hzread,hzwrite; CreatePipe(&hzread,&hzwrite,0,0);
// HANDLE hthread = CreateThread(0,0,ZipReceiverThread,(void*)hzread,0,0);
// HZIP hz = CreateZipHandle(hzwrite,0);
// // ... add to it
// CloseZip(hz);
// CloseHandle(hzwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hthread);
// ... meanwhile DWORD WINAPI ZipReceiverThread(void *dat)
// { HANDLE hread = (HANDLE)dat;
// char buf[1000];
// while (true)
// { DWORD red; ReadFile(hread,buf,1000,&red,NULL);
// // ... and do something with this zip data we're receiving
// if (red==0) break;
// }
// CloseHandle(hread);
// return 0;
// }



// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipZ(HZIP hz);
unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len);
bool IsZipHandleZ(HZIP hz);
#ifdef _unzip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleZ(hz)?CloseZipZ(hz):CloseZipU(hz))
#else
#define CloseZip CloseZipZ
#define FormatZipMessage FormatZipMessageZ
#endif
#endif

zip.cpp文件

#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include "zip.h"


// THIS FILE is almost entirely based upon code by info-zip.
// It has been modified by Lucian Wischik. The modifications
// were a complete rewrite of the bit of code that generates the
// layout of the zipfile, and support for zipping to/from memory
// or handles or pipes or pagefile or diskfiles, encryption, unicode.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
//
//
// This is version 1999-Oct-05 of the Info-ZIP copyright and license.
// The definitive version of this document should be available at
// ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-1999 Info-ZIP. All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
// Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
// Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
// Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum,
// Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller,
// Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel,
// Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen,
// Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is," without warranty of any kind, express
// or implied. In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. Redistributions of source code must retain the above copyright notice,
// definition, disclaimer, and this list of conditions.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, definition, disclaimer, and this list of conditions in
// documentation and/or other materials provided with the distribution.
//
// 3. Altered versions--including, but not limited to, ports to new operating
// systems, existing ports with new graphical interfaces, and dynamic,
// shared, or static library versions--must be plainly marked as such
// and must not be misrepresented as being the original source. Such
// altered versions also must not be misrepresented as being Info-ZIP
// releases--including, but not limited to, labeling of the altered
// versions with the names "Info-ZIP" (or any variation thereof, including,
// but not limited to, different capitalizations), "Pocket UnZip," "WiZ"
// or "MacZip" without the explicit permission of Info-ZIP. Such altered
// versions are further prohibited from misrepresentative use of the
// Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).
//
// 4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
// "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and
// binary releases.
//


typedef unsigned char uch; // unsigned 8-bit value
typedef unsigned short ush; // unsigned 16-bit value
typedef unsigned long ulg; // unsigned 32-bit value
typedef size_t extent; // file size
typedef unsigned Pos; // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing

#ifndef EOF
#define EOF (-1)
#endif


// Error return values. The values 0..4 and 12..18 follow the conventions
// of PKZIP. The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS -1 // used by procname(), zipbare()
#define ZE_OK 0 // success
#define ZE_EOF 2 // unexpected end of zip file
#define ZE_FORM 3 // zip file structure error
#define ZE_MEM 4 // out of memory
#define ZE_LOGIC 5 // internal logic error
#define ZE_BIG 6 // entry too large to split
#define ZE_NOTE 7 // invalid comment format
#define ZE_TEST 8 // zip test (-T) failed or out of memory
#define ZE_ABORT 9 // user interrupt or termination
#define ZE_TEMP 10 // error using a temp file
#define ZE_READ 11 // read or seek error
#define ZE_NONE 12 // nothing to do
#define ZE_NAME 13 // missing or empty zip file
#define ZE_WRITE 14 // error writing to a file
#define ZE_CREAT 15 // couldn't open to write
#define ZE_PARMS 16 // bad command line
#define ZE_OPEN 18 // could not open a specified file to read
#define ZE_MAXERR 18 // the highest error number


// internal file attribute
#define UNKNOWN (-1)
#define BINARY 0
#define ASCII 1

#define BEST -1 // Use best method (deflation or store)
#define STORE 0 // Store method
#define DEFLATE 8 // Deflation method

#define CRCVAL_INITIAL 0L

// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10

// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18

// Definitions for extra field handling:
#define EB_HEADSIZE 4 /* length of a extra field block header */
#define EB_LEN 2 /* offset of data length field in header */
#define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS 0 /* byte offset of Flags field */
#define EB_UT_TIME1 1 /* byte offset of 1st time value */
#define EB_UT_FL_MTIME (1 << 0) /* mtime present */
#define EB_UT_FL_ATIME (1 << 1) /* atime present */
#define EB_UT_FL_CTIME (1 << 2) /* ctime present */
#define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1))


// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}


// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG 0x04034b50L
#define CENSIG 0x02014b50L
#define ENDSIG 0x06054b50L
#define EXTLOCSIG 0x08074b50L


#define MIN_MATCH 3
#define MAX_MATCH 258
// The minimum and maximum match lengths


#define WSIZE (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//

#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//

#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//


#define ZIP_HANDLE 1
#define ZIP_FILENAME 2
#define ZIP_MEMORY 3
#define ZIP_FOLDER 4



// ===========================================================================
// Constants
//

#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits

#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits

#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code

#define LITERALS 256
// number of literal bytes 0..255

#define END_BLOCK 256
// end of block literal code

#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code

#define D_CODES 30
// number of distance codes

#define BL_CODES 19
// number of codes used to transfer the bit lengths


#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
// The three kinds of block type

#define LIT_BUFSIZE 0x8000
#define DIST_BUFSIZE LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances. There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
// - frequencies can be kept in 16 bit counters
// - if compression is not successful for the first block, all input data is
// still in the window so we can still emit a stored block even when input
// comes from standard input. (This can also be done for all blocks if
// LIT_BUFSIZE is not greater than 32K.)
// - if compression is not successful for a file smaller than 64K, we can
// even emit a stored file instead of a stored block (saving 5 bytes).
// - creating new Huffman trees less frequently may not provide fast
// adaptation to changes in the input data statistics. (Take for
// example a binary file with poorly compressible code followed by
// a highly compressible string table.) Smaller buffer sizes give
// fast adaptation but have of course the overhead of transmitting trees
// more frequently.
// - I can't count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//

#define REP_3_6 16
// repeat previous bit length 3-6 times (2 bits of repeat count)

#define REPZ_3_10 17
// repeat a zero length 3-10 times (3 bits of repeat count)

#define REPZ_11_138 18
// repeat a zero length 11-138 times (7 bits of repeat count)

#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size


// ===========================================================================
// Local data used by the "bit string" routines.
//

#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)

// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) \
{ if (state.bs.out_offset >= state.bs.out_size-1) \
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \
state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
}

#define PUTBYTE(state,b) \
{ if (state.bs.out_offset >= state.bs.out_size) \
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
}

// DEFLATE.CPP HEADER

#define HASH_BITS 15
// For portability to 16 bit machines, do not use values above 15.

#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two

#define NIL 0
// Tail of hash chains

#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag

#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR



#define EQUAL 0
// result of memcmp for equal strings


// ===========================================================================
// Local data used by the "longest match" routines.

#define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
// H_SHIFT * MIN_MATCH >= HASH_BITS

#define max_insert_length max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.



const int extra_lbits[LENGTH_CODES] // extra bits for each length code
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};

const int extra_dbits[D_CODES] // extra bits for each distance code
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};

const int extra_blbits[BL_CODES]// extra bits for each bit length code
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};

const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.


typedef struct config {
ush good_length; // reduce lazy search above this match length
ush max_lazy; // do not perform lazy search above this match length
ush nice_length; // quit search above this match length
ush max_chain;
} config;

// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//

const config configuration_table[10] = {
// good lazy nice chain
{0, 0, 0, 0}, // 0 store only
{4, 4, 8, 4}, // 1 maximum speed, no lazy matches
{4, 5, 16, 8}, // 2
{4, 6, 32, 32}, // 3
{4, 4, 16, 16}, // 4 lazy matches */
{8, 16, 32, 32}, // 5
{8, 16, 128, 128}, // 6
{8, 32, 128, 256}, // 7
{32, 128, 258, 1024}, // 8
{32, 258, 258, 4096}};// 9 maximum compression */

// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.







// Data structure describing a single value and its code string.
typedef struct ct_data {
union {
ush freq; // frequency count
ush code; // bit string
} fc;
union {
ush dad; // father node in Huffman tree
ush len; // length of bit string
} dl;
} ct_data;

typedef struct tree_desc {
ct_data *dyn_tree; // the dynamic tree
ct_data *static_tree; // corresponding static tree or NULL
const int *extra_bits; // extra bits for each code or NULL
int extra_base; // base index for extra_bits
int elems; // max number of elements in the tree
int max_length; // max bit length for the codes
int max_code; // largest code with non zero frequency
} tree_desc;




class TTreeState
{ public:
TTreeState();

ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree
ct_data dyn_dtree[2*D_CODES+1]; // distance tree
ct_data static_ltree[L_CODES+2]; // the static literal tree...
// ... Since the bit lengths are imposed, there is no need for the L_CODES
// extra codes used during heap construction. However the codes 286 and 287
// are needed to build a canonical tree (see ct_init below).
ct_data static_dtree[D_CODES]; // the static distance tree...
// ... (Actually a trivial tree since all codes use 5 bits.)
ct_data bl_tree[2*BL_CODES+1]; // Huffman tree for the bit lengths

tree_desc l_desc;
tree_desc d_desc;
tree_desc bl_desc;

ush bl_count[MAX_BITS+1]; // number of codes at each bit length for an optimal tree

int heap[2*L_CODES+1]; // heap used to build the Huffman trees
int heap_len; // number of elements in the heap
int heap_max; // element of largest frequency
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
// The same heap array is used to build all trees.

uch depth[2*L_CODES+1];
// Depth of each subtree used as tie breaker for trees of equal frequency

uch length_code[MAX_MATCH-MIN_MATCH+1];
// length code for each normalized match length (0 == MIN_MATCH)

uch dist_code[512];
// distance codes. The first 256 values correspond to the distances
// 3 .. 258, the last 256 values correspond to the top 8 bits of
// the 15 bit distances.

int base_length[LENGTH_CODES];
// First normalized length for each code (0 = MIN_MATCH)

int base_dist[D_CODES];
// First normalized distance for each code (0 = distance of 1)

uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths
ush far d_buf[DIST_BUFSIZE]; // buffer for distances

uch flag_buf[(LIT_BUFSIZE/8)];
// flag_buf is a bit array distinguishing literals from lengths in
// l_buf, and thus indicating the presence or absence of a distance.

unsigned last_lit; // running index in l_buf
unsigned last_dist; // running index in d_buf
unsigned last_flags; // running index in flag_buf
uch flags; // current flags not yet saved in flag_buf
uch flag_bit; // current bit used in flags
// bits are filled in flags starting at bit 0 (least significant).
// Note: these flags are overkill in the current code since we don't
// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.

ulg opt_len; // bit length of current block with optimal trees
ulg static_len; // bit length of current block with static trees

ulg cmpr_bytelen; // total byte length of compressed file
ulg cmpr_len_bits; // number of bits past 'cmpr_bytelen'

ulg input_len; // total byte length of input file
// input_len is for debugging only since we can get it by other means.

ush *file_type; // pointer to UNKNOWN, BINARY or ASCII
// int *file_method; // pointer to DEFLATE or STORE
};

TTreeState::TTreeState()
{ tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; l_desc = a;
tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; d_desc = b;
tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; bl_desc = c;
last_lit=0;
last_dist=0;
last_flags=0;
}



class TBitState
{ public:

int flush_flg;
//
unsigned bi_buf;
// Output buffer. bits are inserted starting at the bottom (least significant
// bits). The width of bi_buf must be at least 16 bits.
int bi_valid;
// Number of valid bits in bi_buf. All bits above the last valid bit
// are always zero.
char *out_buf;
// Current output buffer.
unsigned out_offset;
// Current offset in output buffer.
// On 16 bit machines, the buffer is limited to 64K.
unsigned out_size;
// Size of current output buffer
ulg bits_sent; // bit length of the compressed data only needed for debugging???
};







class TDeflateState
{ public:
TDeflateState() {window_size=0;}

uch window[2L*WSIZE];
// Sliding window. Input bytes are read into the second half of the window,
// and move to the first half later to keep a dictionary of at least WSIZE
// bytes. With this organization, matches are limited to a distance of
// WSIZE-MAX_MATCH bytes, but this ensures that IO is always
// performed with a length multiple of the block size. Also, it limits
// the window size to 64K, which is quite useful on MSDOS.
// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
// be less efficient since the data would have to be copied WSIZE/CBSZ times)
Pos prev[WSIZE];
// Link to older string with same hash index. To limit the size of this
// array to 64K, this link is maintained only for the last 32K strings.
// An index in this array is thus a window index modulo 32K.
Pos head[HASH_SIZE];
// Heads of the hash chains or NIL. If your compiler thinks that
// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.

ulg window_size;
// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
// input file length plus MIN_LOOKAHEAD.

long block_start;
// window position at the beginning of the current output block. Gets
// negative when the window is moved backwards.

int sliding;
// Set to false when the input file is already in memory

unsigned ins_h; // hash index of string to be inserted

unsigned int prev_length;
// Length of the best match at previous step. Matches not greater than this
// are discarded. This is used in the lazy match evaluation.

unsigned strstart; // start of string to insert
unsigned match_start; // start of matching string
int eofile; // flag set at end of input file
unsigned lookahead; // number of valid bytes ahead in window

unsigned max_chain_length;
// To speed up deflation, hash chains are never searched beyond this length.
// A higher limit improves compression ratio but degrades the speed.

unsigned int max_lazy_match;
// Attempt to find a better match only when the current match is strictly
// smaller than this value. This mechanism is used only for compression
// levels >= 4.

unsigned good_match;
// Use a faster search when the previous match is longer than this

int nice_match; // Stop searching when current match exceeds this
};

typedef __int64 lutime_t; // define it ourselves since we don't include time.h

typedef struct iztimes {
lutime_t atime,mtime,ctime;
} iztimes; // access, modify, create times

typedef struct zlist {
ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are
ulg tim, crc, siz, len;
extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD
ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD
ulg atx, off;
char name[MAX_PATH]; // File name in zip file
char *extra; // Extra field (set only if ext != 0)
char *cextra; // Extra in central (set only if cext != 0)
char *comment; // Comment (set only if com != 0)
char iname[MAX_PATH]; // Internal file name after cleanup
char zname[MAX_PATH]; // External version of internal name
int mark; // Marker for files to operate on
int trash; // Marker for files to delete
int dosflag; // Set to force MSDOS file attributes
struct zlist far *nxt; // Pointer to next header in list
} TZipFileInfo;


struct TState;
typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
struct TState
{ void *param;
int level; bool seekable;
READFUNC readfunc; FLUSHFUNC flush_outbuf;
TTreeState ts; TBitState bs; TDeflateState ds;
const char *err;
};









void Assert(TState &state,bool cond, const char *msg)
{ if (cond) return;
state.err=msg;
}
void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}



// ===========================================================================
// Local (static) routines in this file.
//

void init_block (TState &);
void pqdownheap (TState &,ct_data *tree, int k);
void gen_bitlen (TState &,tree_desc *desc);
void gen_codes (TState &state,ct_data *tree, int max_code);
void build_tree (TState &,tree_desc *desc);
void scan_tree (TState &,ct_data *tree, int max_code);
void send_tree (TState &state,ct_data *tree, int max_code);
int build_bl_tree (TState &);
void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes);
void compress_block (TState &state,ct_data *ltree, ct_data *dtree);
void set_file_type (TState &);
void send_bits (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup (TState &state);
void copy_block (TState &state,char *buf, unsigned len, int header);


#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects

// alternatively...
//#define send_code(state, c, tree)
// { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
// send_bits(state, tree[c].fc.code, tree[c].dl.len); }

#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.

#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */

/* ===========================================================================
* Allocate the match buffer, initialize the various tables and save the
* location of the internal file attribute (ascii/binary) and method
* (DEFLATE/STORE).
*/
void ct_init(TState &state, ush *attr)
{
int n; /* iterates over tree elements */
int bits; /* bit counter */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */

state.ts.file_type = attr;
//state.ts.file_method = method;
state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
state.ts.input_len = 0L;

if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */

/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
state.ts.base_length[code] = length;
for (n = 0; n < (1<<extra_lbits[code]); n++) {
state.ts.length_code[length++] = (uch)code;
}
}
Assert(state,length == 256, "ct_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
state.ts.length_code[length-1] = (uch)code;

/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0 ; code < 16; code++) {
state.ts.base_dist[code] = dist;
for (n = 0; n < (1<<extra_dbits[code]); n++) {
state.ts.dist_code[dist++] = (uch)code;
}
}
Assert(state,dist == 256, "ct_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
state.ts.base_dist[code] = dist << 7;
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
state.ts.dist_code[256 + dist++] = (uch)code;
}
}
Assert(state,dist == 256, "ct_init: 256+dist != 512");

/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
n = 0;
while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;
while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;
while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
/* fc.codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1);

/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
state.ts.static_dtree[n].dl.len = 5;
state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
}

/* Initialize the first block of the first file: */
init_block(state);
}

/* ===========================================================================
* Initialize a new block.
*/
void init_block(TState &state)
{
int n; /* iterates over tree elements */

/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0;
for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0;
for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;

state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
state.ts.opt_len = state.ts.static_len = 0L;
state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
state.ts.flags = 0; state.ts.flag_bit = 1;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(tree, top) \
{\
top = state.ts.heap[SMALLEST]; \
state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \
pqdownheap(state,tree, SMALLEST); \
}

/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m) \
(tree[n].fc.freq < tree[m].fc.freq || \
(tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))

/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
void pqdownheap(TState &state,ct_data *tree, int k)
{
int v = state.ts.heap[k];
int j = k << 1; /* left son of k */
int htemp; /* required because of bug in SASC compiler */

while (j <= state.ts.heap_len) {
/* Set j to the smallest of the two sons: */
if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++;

/* Exit if v is smaller than both sons */
htemp = state.ts.heap[j];
if (smaller(tree, v, htemp)) break;

/* Exchange v with the smallest son */
state.ts.heap[k] = htemp;
k = j;

/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
state.ts.heap[k] = v;
}

/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
void gen_bitlen(TState &state,tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
const int *extra = desc->extra_bits;
int base = desc->extra_base;
int max_code = desc->max_code;
int max_length = desc->max_length;
ct_data *stree = desc->static_tree;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
int bits; /* bit length */
int xbits; /* extra bits */
ush f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */

for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;

/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */

for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) {
n = state.ts.heap[h];
bits = tree[tree[n].dl.dad].dl.len + 1;
if (bits > max_length) bits = max_length, overflow++;
tree[n].dl.len = (ush)bits;
/* We overwrite tree[n].dl.dad which is no longer needed */

if (n > max_code) continue; /* not a leaf node */

state.ts.bl_count[bits]++;
xbits = 0;
if (n >= base) xbits = extra[n-base];
f = tree[n].fc.freq;
state.ts.opt_len += (ulg)f * (bits + xbits);
if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
}
if (overflow == 0) return;

Trace("\nbit length overflow\n");
/* This happens for example on obj2 and pic of the Calgary corpus */

/* Find the first bit length which could increase: */
do {
bits = max_length-1;
while (state.ts.bl_count[bits] == 0) bits--;
state.ts.bl_count[bits]--; /* move one leaf down the tree */
state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */
state.ts.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);

/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = state.ts.bl_count[bits];
while (n != 0) {
m = state.ts.heap[--h];
if (m > max_code) continue;
if (tree[m].dl.len != (ush)bits) {
Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq;
tree[m].dl.len = (ush)bits;
}
n--;
}
}
}

/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
void gen_codes (TState &state, ct_data *tree, int max_code)
{
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
ush code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */

/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1);
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,
"inconsistent bit counts");
Trace("\ngen_codes: max_code %d ", max_code);

for (n = 0; n <= max_code; n++) {
int len = tree[n].dl.len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);

//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);
}
}

/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
void build_tree(TState &state,tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
ct_data *stree = desc->static_tree;
int elems = desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node = elems; /* next internal node of the tree */

/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;

for (n = 0; n < elems; n++) {
if (tree[n].fc.freq != 0) {
state.ts.heap[++state.ts.heap_len] = max_code = n;
state.ts.depth[n] = 0;
} else {
tree[n].dl.len = 0;
}
}

/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (state.ts.heap_len < 2) {
int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[newcp].fc.freq = 1;
state.ts.depth[newcp] = 0;
state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;

/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n);

/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(tree, n); /* n = node of least frequency */
m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */

state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
state.ts.heap[--state.ts.heap_max] = m;

/* Create a new node father of n and m */
tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
tree[n].dl.dad = tree[m].dl.dad = (ush)node;
/* and insert the new node in the heap */
state.ts.heap[SMALLEST] = node++;
pqdownheap(state,tree, SMALLEST);

} while (state.ts.heap_len >= 2);

state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];

/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(state,(tree_desc *)desc);

/* The field len is now set, we can generate the bit codes */
gen_codes (state,(ct_data *)tree, max_code);
}

/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
void scan_tree (TState &state,ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */

if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code+1].dl.len = (ush)-1; /* guard */

for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].dl.len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
} else if (curlen != 0) {
if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;
state.ts.bl_tree[REP_3_6].fc.freq++;
} else if (count <= 10) {
state.ts.bl_tree[REPZ_3_10].fc.freq++;
} else {
state.ts.bl_tree[REPZ_11_138].fc.freq++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}

/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
void send_tree (TState &state, ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */

/* tree[max_code+1].dl.len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;

for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].dl.len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0);

} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(state, curlen, state.ts.bl_tree); count--;
}
Assert(state,count >= 3 && count <= 6, " 3_6?");
send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2);

} else if (count <= 10) {
send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3);

} else {
send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7);
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}

/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
int build_bl_tree(TState &state)
{
int max_blindex; /* index of last bit length code of non zero freq */

/* Determine the bit length frequencies for literal and distance trees */
scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);

/* Build the bit length tree: */
build_tree(state,(tree_desc *)(&state.ts.bl_desc));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/

/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
state.ts.opt_len += 3*(max_blindex+1) + 5+5+4;
Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

return max_blindex;
}

/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes)
{
int rank; /* index in bl_order */

Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
"too many codes");
Trace("\nbl counts: ");
send_bits(state,lcodes-257, 5);
/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
send_bits(state,dcodes-1, 5);
send_bits(state,blcodes-4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
Trace("\nbl code %2d ", bl_order[rank]);
send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3);
}
Trace("\nbl tree: sent %ld", state.bs.bits_sent);

send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */
Trace("\nlit tree: sent %ld", state.bs.bits_sent);

send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */
Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}

/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length (in bytes) for the file so far.
*/
ulg flush_block(TState &state,char *buf, ulg stored_len, int eof)
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */

state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */

/* Check if the file is ascii or binary */
if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);

/* Construct the literal and distance trees */
build_tree(state,(tree_desc *)(&state.ts.l_desc));
Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

build_tree(state,(tree_desc *)(&state.ts.d_desc));
Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/

/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(state);

/* Determine the best encoding. Compute first the block length in bytes */
opt_lenb = (state.ts.opt_len+3+7)>>3;
static_lenb = (state.ts.static_len+3+7)>>3;
state.ts.input_len += stored_len; /* for debugging only */

Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
state.ts.last_lit, state.ts.last_dist);

if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

// Originally, zip allowed the file to be transformed from a compressed
// into a stored file in the case where compression failed, there
// was only one block, and it was allowed to change. I've removed this
// possibility since the code's cleaner if no changes are allowed.
//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
// && state.ts.cmpr_len_bits == 0L && state.seekable)
//{ // && state.ts.file_method != NULL
// // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
// Assert(state,buf!=NULL,"block vanished");
// copy_block(state,buf, (unsigned)stored_len, 0); // without header
// state.ts.cmpr_bytelen = stored_len;
// Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
// //*state.ts.file_method = STORE;
//}
//else
if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
send_bits(state,(STORED_BLOCK<<1)+eof, 3); /* send block type */
state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
state.ts.cmpr_len_bits = 0L;

copy_block(state,buf, (unsigned)stored_len, 1); /* with header */
}
else if (static_lenb == opt_lenb) {
send_bits(state,(STATIC_TREES<<1)+eof, 3);
compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.static_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
else {
send_bits(state,(DYN_TREES<<1)+eof, 3);
send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1);
compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
init_block(state);

if (eof) {
// Assert(state,input_len == isize, "bad input size");
bi_windup(state);
state.ts.cmpr_len_bits += 7; /* align on byte boundary */
}
Trace("\n");

return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}

/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ct_tally (TState &state,int dist, int lc)
{
state.ts.l_buf[state.ts.last_lit++] = (uch)lc;
if (dist == 0) {
/* lc is the unmatched char */
state.ts.dyn_ltree[lc].fc.freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
Assert(state,(ush)dist < (ush)MAX_DIST &&
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
(ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");

state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++;
state.ts.dyn_dtree[d_code(dist)].fc.freq++;

state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
state.ts.flags |= state.ts.flag_bit;
}
state.ts.flag_bit <<= 1;

/* Output the flags if they fill a byte: */
if ((state.ts.last_lit & 7) == 0) {
state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
state.ts.flags = 0, state.ts.flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) {
/* Compute an upper bound for the compressed length */
ulg out_length = (ulg)state.ts.last_lit*8L;
ulg in_length = (ulg)state.ds.strstart-state.ds.block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]);
}
out_length >>= 3;
Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
state.ts.last_lit, state.ts.last_dist, in_length, out_length,
100L - out_length*100L/in_length);
if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1;
}
return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}

/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
void compress_block(TState &state,ct_data *ltree, ct_data *dtree)
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
uch flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */

if (state.ts.last_lit != 0) do {
if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];
lc = state.ts.l_buf[lx++];
if ((flag & 1) == 0) {
send_code(state,lc, ltree); /* send a literal byte */
} else {
/* Here, lc is the match length - MIN_MATCH */
code = state.ts.length_code[lc];
send_code(state,code+LITERALS+1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= state.ts.base_length[code];
send_bits(state,lc, extra); /* send the extra length bits */
}
dist = state.ts.d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
Assert(state,code < D_CODES, "bad d_code");

send_code(state,code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= state.ts.base_dist[code];
send_bits(state,dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < state.ts.last_lit);

send_code(state,END_BLOCK, ltree);
}

/* ===========================================================================
* Set the file type to ASCII or BINARY, using a crude approximation:
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
* IN assertion: the fields freq of dyn_ltree are set and the total of all
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
*/
void set_file_type(TState &state)
{
int n = 0;
unsigned ascii_freq = 0;
unsigned bin_freq = 0;
while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}


/* ===========================================================================
* Initialize the bit string routines.
*/
void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{
state.bs.out_buf = tgt_buf;
state.bs.out_size = tgt_size;
state.bs.out_offset = 0;
state.bs.flush_flg = flsh_allowed;

state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = 0L;
}

/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
void send_bits(TState &state,int value, int length)
{
Assert(state,length > 0 && length <= 15, "invalid length");
state.bs.bits_sent += (ulg)length;
/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
* (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
* then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
* unused bits in bi_buf.
*/
state.bs.bi_buf |= (value << state.bs.bi_valid);
state.bs.bi_valid += length;
if (state.bs.bi_valid > (int)Buf_size) {
PUTSHORT(state,state.bs.bi_buf);
state.bs.bi_valid -= Buf_size;
state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
}
}

/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
unsigned bi_reverse(unsigned code, int len)
{
register unsigned res = 0;
do {
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}

/* ===========================================================================
* Write out any remaining bits in an incomplete byte.
*/
void bi_windup(TState &state)
{
if (state.bs.bi_valid > 8) {
PUTSHORT(state,state.bs.bi_buf);
} else if (state.bs.bi_valid > 0) {
PUTBYTE(state,state.bs.bi_buf);
}
if (state.bs.flush_flg) {
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);
}
state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = (state.bs.bits_sent+7) & ~7;
}

/* ===========================================================================
* Copy a stored block to the zip file, storing first the length and its
* one's complement if requested.
*/
void copy_block(TState &state, char *block, unsigned len, int header)
{
bi_windup(state); /* align on byte boundary */

if (header) {
PUTSHORT(state,(ush)len);
PUTSHORT(state,(ush)~len);
state.bs.bits_sent += 2*16;
}
if (state.bs.flush_flg) {
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);
state.bs.out_offset = len;
state.flush_outbuf(state.param,block, &state.bs.out_offset);
} else if (state.bs.out_offset + len > state.bs.out_size) {
Assert(state,false,"output buffer too small for in-memory compression");
} else {
memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
state.bs.out_offset += len;
}
state.bs.bits_sent += (ulg)len<<3;
}








/* ===========================================================================
* Prototypes for functions.
*/

void fill_window (TState &state);
ulg deflate_fast (TState &state);

int longest_match (TState &state,IPos cur_match);


/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)

/* ===========================================================================
* Insert string s in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#define INSERT_STRING(s, match_head) \
(UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \
state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \
state.ds.head[state.ds.ins_h] = (s))

/* ===========================================================================
* Initialize the "longest match" routines for a new file
*
* IN assertion: window_size is > 0 if the input file is already read or
* mmap'ed in the window[] array, 0 otherwise. In the first case,
* window_size is sufficient to contain the whole input file plus
* MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
* of window[] when looking for matches towards the end).
*/
void lm_init (TState &state, int pack_level, ush *flags)
{
register unsigned j;

Assert(state,pack_level>=1 && pack_level<=8,"bad pack level");

/* Do not slide the window if the whole input is already in memory
* (window_size > 0)
*/
state.ds.sliding = 0;
if (state.ds.window_size == 0L) {
state.ds.sliding = 1;
state.ds.window_size = (ulg)2L*WSIZE;
}

/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
state.ds.head[HASH_SIZE-1] = NIL;
memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head));

/* Set the default configuration parameters:
*/
state.ds.max_lazy_match = configuration_table[pack_level].max_lazy;
state.ds.good_match = configuration_table[pack_level].good_length;
state.ds.nice_match = configuration_table[pack_level].nice_length;
state.ds.max_chain_length = configuration_table[pack_level].max_chain;
if (pack_level <= 2) {
*flags |= FAST;
} else if (pack_level >= 8) {
*flags |= SLOW;
}
/* ??? reduce max_chain_length for binary files */

state.ds.strstart = 0;
state.ds.block_start = 0L;

j = WSIZE;
j <<= 1; // Can read 64K in one step
state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j);

if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) {
state.ds.eofile = 1, state.ds.lookahead = 0;
return;
}
state.ds.eofile = 0;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);

state.ds.ins_h = 0;
for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
}


/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
*/
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state,IPos cur_match)
{
unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */
register uch far *scan = state.ds.window + state.ds.strstart; /* current string */
register uch far *match; /* matched string */
register int len; /* length of current match */
int best_len = state.ds.prev_length; /* best match length so far */
IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/

// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
// It is easy to get rid of this optimization if necessary.
Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever");



register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
register uch scan_end1 = scan[best_len-1];
register uch scan_end = scan[best_len];

/* Do not waste too much time if we already have a good match: */
if (state.ds.prev_length >= state.ds.good_match) {
chain_length >>= 2;
}

Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead");

do {
Assert(state,cur_match < state.ds.strstart, "no future");
match = state.ds.window + cur_match;

/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
if (match[best_len] != scan_end ||
match[best_len-1] != scan_end1 ||
*match != *scan ||
*++match != scan[1]) continue;

/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2, match++;

/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
scan < strend);

Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan");

len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;


if (len > best_len) {
state.ds.match_start = cur_match;
best_len = len;
if (len >= state.ds.nice_match) break;
scan_end1 = scan[best_len-1];
scan_end = scan[best_len];

unzip.h头文件

#ifndef _unzip_H
#define _unzip_H

// UNZIPPING functions -- for unzipping.
// This file is a repackaged form of extracts from the zlib code available
// at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original
// copyright notice may be found in unzip.cpp. The repackaging was done
// by Lucian Wischik to simplify and extend its use in Windows/C++. Also
// encryption and unicode filenames have been added.


#ifndef _zip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that has been opened

typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.

typedef struct
{ int index; // index of this file within the zip
TCHAR name[MAX_PATH]; // filename within the zip
DWORD attr; // attributes, as in GetFileAttributes.
FILETIME atime,ctime,mtime;// access, create, modify filetimes
long comp_size; // sizes of item, compressed and uncompressed. These
long unc_size; // may be -1 if not yet known (e.g. being streamed in)
} ZIPENTRY;


HZIP OpenZip(const TCHAR *fn, const char *password);
HZIP OpenZip(void *z,unsigned int len, const char *password);
HZIP OpenZipHandle(HANDLE h, const char *password);
// OpenZip - opens a zip file and returns a handle with which you can
// subsequently examine its contents. You can open a zip file from:
// from a pipe: OpenZipHandle(hpipe_read,0);
// from a file (by handle): OpenZipHandle(hfile,0);
// from a file (by name): OpenZip("c:\\test.zip","password");
// from a memory block: OpenZip(bufstart, buflen,0);
// If the file is opened through a pipe, then items may only be
// accessed in increasing order, and an item may only be unzipped once,
// although GetZipItem can be called immediately before and after unzipping
// it. If it's opened in any other way, then full random access is possible.
// Note: pipe input is not yet implemented.
// Note: zip passwords are ascii, not unicode.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.

ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze);
// GetZipItem - call this to get information about an item in the zip.
// If index is -1 and the file wasn't opened through a pipe,
// then it returns information about the whole zipfile
// (and in particular ze.index returns the number of index items).
// Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY)
// See below for notes on what happens when you unzip such an item.
// Note: if you are opening the zip through a pipe, then random access
// is not possible and GetZipItem(-1) fails and you can't discover the number
// of items except by calling GetZipItem on each one of them in turn,
// starting at 0, until eventually the call fails. Also, in the event that
// you are opening through a pipe and the zip was itself created into a pipe,
// then then comp_size and sometimes unc_size as well may not be known until
// after the item has been unzipped.

ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
// FindZipItem - finds an item by name. ic means 'insensitive to case'.
// It returns the index of the item, and returns information about it.
// If nothing was found, then index is set to -1 and the function returns
// an error code.

ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn);
ZRESULT UnzipItem(HZIP hz, int index, void *z,unsigned int len);
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h);
// UnzipItem - given an index to an item, unzips it. You can unzip to:
// to a pipe: UnzipItemHandle(hz,i, hpipe_write);
// to a file (by handle): UnzipItemHandle(hz,i, hfile);
// to a file (by name): UnzipItem(hz,i, ze.name);
// to a memory block: UnzipItem(hz,i, buf,buflen);
// In the final case, if the buffer isn't large enough to hold it all,
// then the return code indicates that more is yet to come. If it was
// large enough, and you want to know precisely how big, GetZipItem.
// Note: zip files are normally stored with relative pathnames. If you
// unzip with ZIP_FILENAME a relative pathname then the item gets created
// relative to the current directory - it first ensures that all necessary
// subdirectories have been created. Also, the item may itself be a directory.
// If you unzip a directory with ZIP_FILENAME, then the directory gets created.
// If you unzip it to a handle or a memory block, then nothing gets created
// and it emits 0 bytes.
ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir);
// if unzipping to a filename, and it's a relative filename, then it will be relative to here.
// (defaults to current-directory).


ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.

unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.


// These are the result codes:
#define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK 0x0000FF00
#define ZR_NODUPH 0x00000100 // couldn't duplicate the handle
#define ZR_NOFILE 0x00000200 // couldn't create/open the file
#define ZR_NOALLOC 0x00000300 // failed to allocate some resource
#define ZR_WRITE 0x00000400 // a general error writing to the file
#define ZR_NOTFOUND 0x00000500 // couldn't find that file in the zip
#define ZR_MORE 0x00000600 // there's still more data to be unzipped
#define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile
#define ZR_READ 0x00000800 // a general error reading the file
#define ZR_PASSWORD 0x00001000 // we didn't get the right password to unzip the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS 0x00010000 // general mistake with the arguments
#define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE 0x00030000 // the memory size is too small
#define ZR_FAILED 0x00040000 // the thing was already failed when you called this function
#define ZR_ENDED 0x00050000 // the zip creation has already been closed
#define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped
#define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK 0xFF000000
#define ZR_NOTINITED 0x01000000 // initialisation didn't work
#define ZR_SEEK 0x02000000 // trying to seek in an unseekable file
#define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed
#define ZR_FLATE 0x05000000 // an internal error in the de/inflation code





// e.g.
//
// SetCurrentDirectory("c:\\docs\\stuff");
// HZIP hz = OpenZip("c:\\stuff.zip",0);
// ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index;
// for (int i=0; i<numitems; i++)
// { GetZipItem(hz,i,&ze);
// UnzipItem(hz,i,ze.name);
// }
// CloseZip(hz);
//
//
// HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA);
// HANDLE hglob = LoadResource(hInstance,hrsrc);
// void *zipbuf=LockResource(hglob);
// unsigned int ziplen=SizeofResource(hInstance,hrsrc);
// HZIP hz = OpenZip(zipbuf, ziplen, 0);
// - unzip to a membuffer -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char *ibuf = new char[ze.unc_size];
// UnzipItem(hz,i, ibuf, ze.unc_size);
// delete[] ibuf;
// - unzip to a fixed membuff -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0;
// while (zr==ZR_MORE)
// { zr = UnzipItem(hz,i, ibuf,1024);
// unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize;
// totsize+=bufsize;
// }
// - unzip to a pipe -
// HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite);
// int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze);
// UnzipItemHandle(hz,i, hwrite);
// CloseHandle(hwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hwrite); CloseHandle(hthread);
// - finished -
// CloseZip(hz);
// // note: no need to free resources obtained through Find/Load/LockResource
//
//
// SetCurrentDirectory("c:\\docs\\pipedzipstuff");
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0);
// CreateZipWriterThread(hwrite);
// HZIP hz = OpenZipHandle(hread,0);
// for (int i=0; ; i++)
// { ZIPENTRY ze;
// ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more
// UnzipItem(hz,i, ze.name);
// }
// CloseZip(hz);
//
//




// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipU(HZIP hz);
unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf,unsigned int len);
bool IsZipHandleU(HZIP hz);
#ifdef _zip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz))
#else
#define CloseZip CloseZipU
#define FormatZipMessage FormatZipMessageU
#endif



#endif // _unzip_H

使用方法

HZIP hz = CreateZip(L"simple.zip",0);
ZipAdd(hz,L"ax_29_win7.7z", L"ax_29_win7.7z");
ZipAdd(hz,L"ax_29_win10.7z", L"ax_29_win10.7z");
CloseZip(hz);

总结起来就是创建zip,引入相关文件,关闭zip,释放内存。


标签:code,zip,压缩,tree,ts,C++,state,length,define
From: https://blog.51cto.com/u_15906863/5978175

相关文章