声明:本文参考了Alex Allain的文章http://www.cprogramming.com/c++11/c++11-lambda-closures.html
加入了自己的理解,不是简单的翻译
C++11终于知道要在语言中加入匿名函数了。匿名函数在很多时候可以为编码提供便利,这在下文会提到。很多语言中的匿名函数,如C++,都是用Lambda表达式实现的。Lambda表达式又称为lambda函数。我在下文中称之为Lambda函数。
为了明白Lambda函数的用处,请务必先搞明白C++中的自动类型推断
基本的Lambda函数
我们可以这样定义一个Lambda函数:
1. #include <iostream>
2.
3. using namespace std;
4.
5. int main()
6. {
7. "Hello world"; };
8. // now call the function
9. }
其中func就是一个lambda函数。我们使用auto来自动获取func的类型,这个非常重要。定义好lambda函数之后,就可以当这场函数来使用了。
其中 [ ] 表示接下来开始定义lambda函数,中括号中间有可能还会填参数,这在后面介绍。之后的()填写的是lambda函数的参数列表{}中间就是函数体了。
[cpp] view plain copy
- [] () -> int { return 1; }
所以总的来说lambda函数的形式就是:
1. [captures] (params) -> ret {Statments;}
Lambda函数的用处
假设你设计了一个地址簿的类。现在你要提供函数查询这个地址簿,可能根据姓名查询,可能根据地址查询,还有可能两者结合。要是你为这些情况都写个函数,那么你一定就跪了。所以你应该提供一个接口,能方便地让用户自定义自己的查询方式。在这里可以使用lambda函数来实现这个功能。
1. #include <string>
2. #include <vector>
3.
4. class AddressBook
5. {
6. public:
7. // using a template allows us to ignore the differences between functors, function pointers
8. // and lambda
9. template<typename Func>
10. std::vector<std::string> findMatchingAddresses (Func func)
11. {
12. std::vector<std::string> results;
13. for ( auto itr = _addresses.begin(), end = _addresses.end(); itr != end; ++itr )
14. {
15. // call the function passed into findMatchingAddresses and see if it matches
16. if ( func( *itr ) )
17. {
18. results.push_back( *itr );
19. }
20. }
21. return results;
22. }
23.
24. private:
25. std::vector<std::string> _addresses;
26. };
从上面代码可以看到,findMatchingAddressses函数提供的参数是Func类型,这是一个泛型类型。在使用过程中应该传入一个函数,然后分别对地址簿中每一个entry执行这个函数,如果返回值为真那么表明这个entry符合使用者的筛选要求,那么就应该放入结果当中。那么这个Func类型的参数如何传入呢?
1. AddressBook global_address_book;
2.
3. vector<string> findAddressesFromOrgs ()
4. {
5. return global_address_book.findMatchingAddresses(
6. // we're declaring a lambda here; the [] signals the start
7. const string& addr) { return addr.find( ".org" ) != string::npos; }
8. );
9. }
可以看到,我们在调用函数的时候直接定义了一个lambda函数。参数类型是
1. const string& addr
返回值是bool类型。
如果用户要使用不同的方式查询的话,只要定义不同的lambda函数就可以了。
Lambda函数中的变量截取
在上述例子中,lambda函数使用的都是函数体的参数和它内部的信息,并没有使用外部信息。我们设想这样的一个场景,我们从键盘读入一个名字,然后用lambda函数定义一个匿名函数,在地址簿中查找有没有相同名字的人。那么这个lambda函数势必就要能使用外部block中的变量,所以我们就得使用变量截取功能(Variable Capture)。
1. // read in the name from a user, which we want to search
2. string name;
3. cin>> name;
4. return global_address_book.findMatchingAddresses(
5. // notice that the lambda function uses the the variable 'name'
6. const string& addr) { return name.find( addr ) != string::npos; }
7. );
下面是各种变量截取的选项:
- [] 不截取任何变量
- [&} 截取外部作用域中所有变量,并作为引用在函数体中使用
- [=] 截取外部作用域中所有变量,并拷贝一份在函数体中使用
- [=, &foo] 截取外部作用域中所有变量,并拷贝一份在函数体中使用,但是对foo变量使用引用
- [bar]
- [this] 截取当前类中的this指针。如果已经使用了&或者=就默认添加此选项。
Lambda函数和STL
lambda函数的引入为STL的使用提供了极大的方便。比如下面这个例子,当你想便利一个vector的时候,原来你得这么写:
1. vector<int> v;
2. v.push_back( 1 );
3. v.push_back( 2 );
4. //...
5. for ( auto itr = v.begin(), end = v.end(); itr != end; itr++ )
6. {
7. cout << *itr;
8. }
1. vector<int> v;
2. v.push_back( 1 );
3. v.push_back( 2 );
4. //...
5. for_each( v.begin(), v.end(), [] (int val)
6. {
7. cout << val;
8. } );
而且这么写了之后执行效率反而提高了。因为编译器有可能使用”循环展开“来加速执行过程(计算机系统结构课程中学的)。
http://www.nwcpp.org/images/stories/lambda.pdf 这个PPT详细介绍了如何使用lambda表达式和STL
给大家写一个例子:
C++11 的 lambda 表达式规范如下:
| (1) | |
| (2) | |
| (3) | |
| (4) | |
其中
- (1) 是完整的 lambda 表达式形式,
- (2) const 类型的 lambda 表达式,该类型的表达式不能改捕获("capture")列表中的值。
- (3)省略了返回值类型的 lambda 表达式,但是该 lambda 表达式的返回类型可以按照下列规则推演出来:
- 如果 lambda 代码块中包含了 return 语句,则该 lambda 表达式的返回类型由 return 语句的返回类型确定。
- 如果没有 return 语句,则类似 void f(...) 函数。
- 省略了参数列表,类似于无参函数 f()。
mutable 修饰符说明 lambda 表达式体内的代码可以修改被捕获的变量,并且可以访问被捕获对象的 non-const 方法。
exception 说明 lambda 表达式是否抛出异常(noexcept
),以及抛出何种异常,类似于void f() throw(X, Y)。
attribute 用来声明属性。
另外,capture 指定了在可见域范围内 lambda 表达式的代码内可见得外部变量的列表,具体解释如下:
-
[a,&b]
a变量以值的方式呗捕获,b以引用的方式被捕获。 -
[this]
以值的方式捕获 this 指针。 -
[&]
以引用的方式捕获所有的外部自动变量。 -
[=]
以值的方式捕获所有的外部自动变量。 -
[]
不捕获外部的任何变量。
此外,params 指定 lambda 表达式的参数。
一个具体的 C++11 lambda 表达式例子:
#include <vector>
#include <iostream>
#include <algorithm>
#include <functional>
int main()
{
std::vector<int> c { 1,2,3,4,5,6,7 };
int x = 5;
c.erase(std::remove_if(c.begin(), c.end(), [x](int n) { return n < x; } ), c.end());
std::cout << "c: ";
for (auto i: c) {
std::cout << i << ' ';
}
std::cout << '\n';
// the type of a closure cannot be named, but can be inferred with auto
auto func1 = [](int i) { return i+4; };
std::cout << "func1: " << func1(6) << '\n';
// like all callable objects, closures can be captured in std::function
// (this may incur unnecessary overhead)
std::function<int(int)> func2 = [](int i) { return i+4; };
std::cout << "func2: " << func2(6) << '\n';
}