首页 > 编程语言 >javaclient操作kafka&springboot整合kafka&kafka分区

javaclient操作kafka&springboot整合kafka&kafka分区

时间:2022-12-11 15:33:19浏览次数:77  
标签:springboot kafka topic org apache import public javaclient

1. javaclient 测试kafka

1. 配置kafka 允许远程推送

修改config/Kraft/server.properties 文件,,将地址变为服务器公网IP地址。

advertised.listeners=PLAINTEXT://localhost:9092

然后重启

2. 测试AdminClient 对topic等元数据的管理

测试类以及结果:

package cn.qz.cloud.kafka.client;

import com.google.common.collect.Sets;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.admin.*;

import java.util.*;
import java.util.concurrent.ExecutionException;

/**
 * 对Topic的CRUD
 */
@Slf4j
public class KafkaAdminTest {

    public static Properties props = new Properties();

    static {
        props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BOOTSTRAP_SERVER);
        props.put("request.timeout.ms", 60000);
    }

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        createTopic();
        describeTopic();
    }

    public static void createTopic() throws ExecutionException, InterruptedException {
        String topicName = KafkaConstants.TOPIC_NAME;
        try (AdminClient adminClient = AdminClient.create(props)) {
            /**
             * 2 代表分区
             * 1 代表副本
             */
            NewTopic newTopic = new NewTopic(topicName, 2, (short) 1);
            CreateTopicsResult topics = adminClient.createTopics(Collections.singletonList(newTopic));
            log.info("{}", topics.all().get());
        }
    }

    public static void listTopic() throws ExecutionException, InterruptedException {
        ListTopicsOptions listTopicsOptions = new ListTopicsOptions();
        listTopicsOptions.listInternal(true);
        try (AdminClient adminClient = AdminClient.create(props)) {
            ListTopicsResult listTopicsResult = adminClient.listTopics(listTopicsOptions);
            Collection<TopicListing> topicListings = listTopicsResult.listings().get();
            log.info("{}", topicListings);
            /**
             * [(name=quickstart-events, topicId=rPIXse70QvK3Rri24a-bNg, internal=false), (name=myTopic1, topicId=E6i1TbWXTz-11yKI207ZLA, internal=false), (name=__consumer_offsets, topicId=38T6UsJSRn2BL6tnfj5Wfg, internal=true)]
             */
        }
    }

    public static void deleteTopic() throws ExecutionException, InterruptedException {
        String topicName = KafkaConstants.TOPIC_NAME;
        try (AdminClient adminClient = AdminClient.create(props)) {
            DeleteTopicsResult deleteTopicsResult = adminClient.deleteTopics(Sets.newHashSet(topicName));
            log.info("{}", deleteTopicsResult);
        }
    }

    public static void describeTopic() throws ExecutionException, InterruptedException {
        String topicName = KafkaConstants.TOPIC_NAME;
        try (AdminClient adminClient = AdminClient.create(props)) {
            DescribeTopicsResult topicsResult = adminClient.describeTopics(Arrays.asList(topicName));
            Map<String, TopicDescription> topicDescription = topicsResult.all().get();
            log.info("{}", topicDescription);
            /**
             * {myTopic1=(name=myTopic1, internal=false, partitions=(partition=0, leader=x.x.x.x:9092 (id: 1 rack: null), replicas=x.x.x.x:9092 (id: 1 rack: null), isr=x.x.x.x:9092 (id: 1 rack: null)),(partition=1, leader=x.x.x.x:9092 (id: 1 rack: null), replicas=x.x.x.x:9092 (id: 1 rack: null), isr=x.x.x.x:9092 (id: 1 rack: null)), authorizedOperations=null)}
             */
        }
    }
}

3. 消息生产者

下面重新创建myTopic1。 设置分区位6,副本为1。启动一个消费者进行监听测试:

bin/kafka-console-consumer.sh --topic myTopic1 --from-beginning --bootstrap-server localhost:9092

1. ProducerRecord 介绍

向topic 发送消息的时候是发送这么一条消息。源码如下:

public class ProducerRecord<K, V> {

    private final String topic;
    private final Integer partition;
    private final Headers headers;
    private final K key;
    private final V value;
    private final Long timestamp;

    /**
     * Creates a record with a specified timestamp to be sent to a specified topic and partition
     * 
     * @param topic The topic the record will be appended to
     * @param partition The partition to which the record should be sent
     * @param timestamp The timestamp of the record, in milliseconds since epoch. If null, the producer will assign
     *                  the timestamp using System.currentTimeMillis().
     * @param key The key that will be included in the record
     * @param value The record contents
     * @param headers the headers that will be included in the record
     */
    public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value, Iterable<Header> headers) {
        if (topic == null)
            throw new IllegalArgumentException("Topic cannot be null.");
        if (timestamp != null && timestamp < 0)
            throw new IllegalArgumentException(
                    String.format("Invalid timestamp: %d. Timestamp should always be non-negative or null.", timestamp));
        if (partition != null && partition < 0)
            throw new IllegalArgumentException(
                    String.format("Invalid partition: %d. Partition number should always be non-negative or null.", partition));
        this.topic = topic;
        this.partition = partition;
        this.key = key;
        this.value = value;
        this.timestamp = timestamp;
        this.headers = new RecordHeaders(headers);
    }

​ 可以看到可以指定partition、key、value、headers,其中只有topic和value是必须的。其逻辑如下:

  1. 若指定Partition ID,则PR被发送至指定Partition
  2. 若未指定Partition ID,但指定了Key, PR会按照hasy(key)发送至对应Partition
  3. 若既未指定Partition ID也没指定Key,PR会按照round-robin模式发送到每个Partition
  4. 若同时指定了Partition ID和Key, PR只会发送到指定的Partition (Key不起作用,代码逻辑决定)

比如发送一条消息如下:

Header header = new RecordHeader("testHeader", "testHeaderValue".getBytes());
                ProducerRecord producerRecord = new ProducerRecord(topic, null, null, "TEST_KEY", msg, Sets.newHashSet(header));

消费者收到的消息如下:(也就是消费者可以拿到header的消息)

topic: myTopic1, partition: 2, offset: 0, key: TEST_KEY, value: testMsg
key: testHeader, value: testHeaderValue

下面发送的消息以及消费者都简单的发送字符串消息,不指定key、也不指定partition、也不指定header。

2. 发送消息

下面代码演示了同步发送、异步发送、基于幂等发送、以及基于事务的发送消息。

package cn.qz.cloud.kafka.client;

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.errors.OutOfOrderSequenceException;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

@Slf4j
public class Producer {

    private Properties properties = new Properties();

    private KafkaProducer kafkaProducer;

    public Producer() {
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BOOTSTRAP_SERVER);
        /**
         * client 的作用是
         */
//        properties.put(ProducerConfig.CLIENT_ID_CONFIG, "client1");
        /**
         * 序列化方法
         */
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384"); // DEFAULT 16384 = 16K
        /**
         * acks=0 消息发送出去,不管数据是否从Partition Leader上写到磁盘是否成功,直接认为消息发送成功。
         * acks = 1 Partition Leader接收到消息并写入本地磁盘,就认为消息发送成功,不管其他的Follower有没有同步消息
         * acks=all Partition Leader接收到消息之后,必须确认ISR列表里跟Leader保持同步的Follower列表集合都要同步此消息后,客户端才认为消息发送成功
         */
        properties.put(ProducerConfig.ACKS_CONFIG, "all"); // default 1
        properties.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG, "3000"); // DEFAULT 3000 ms = 3 s
        // 更多默认值参考: CommonClientConfigs
    }

    /**
     * 简单的发送消息
     */
    public void produce(SendTypeEnum sendTypeEnum, String msg) {
        String topic = KafkaConstants.TOPIC_NAME;
        try {
            kafkaProducer = new KafkaProducer(properties);
            long startTime = System.currentTimeMillis();
            // 异步
            if (sendTypeEnum == SendTypeEnum.ASYNC) {
                kafkaProducer.send(new ProducerRecord(topic, msg), new ProducerCallBack(startTime, msg));
            }
            // 发出去不关心结果
            // 方法返回的是一个Future 对象,不调用get 则不会阻塞
            if (SendTypeEnum.WITHOUT_RESULT == sendTypeEnum) {
                kafkaProducer.send(new ProducerRecord(topic, msg));
            }
            // 同步:org.apache.kafka.clients.producer.KafkaProducer.send(org.apache.kafka.clients.producer.ProducerRecord<K,V>)
            // 方法返回的是一个Future 对象,调用get 则是阻塞等待结果
            if (SendTypeEnum.SYNC_WITH_RESULT == sendTypeEnum) {
                RecordMetadata rm = (RecordMetadata) kafkaProducer.send(new ProducerRecord(topic, msg)).get();
                log.info("rm: {}", ToStringBuilder.reflectionToString(rm, ToStringStyle.NO_CLASS_NAME_STYLE));
            }
        } catch (Exception e) {
            log.error("produce error", e);
        } finally {
            kafkaProducer.close();
        }
    }

    /**
     * 开启幂等性
     *
     * @param msg
     */
    public void produceIdempotence(String msg) {
        // 设置幂等之后,重试次数将变为Integer.MAX_VALUE  次, 且acks 被设为all
        /**
         * Producer ID(即PID)和Sequence Number
         * PID。每个新的Producer在初始化的时候会被分配一个唯一的PID,这个PID对用户是不可见的。
         * Sequence Numbler。(对于每个PID,该Producer发送数据的每个<Topic, Partition>都对应一个从0开始单调递增的Sequence Number。Broker端在缓存中保存了这seq number,对于接收的每条消息,如果其序号比Broker缓存中序号大于1则接受它,否则将其丢弃。这样就可以实现了消息重复提交了。
         * 它只能保证单分区上的幂等性,即一个幂等性Producer 能够保证某个主题的一个分区上不出现重复消息,它无法实现多个分区的幂等性。其次,它只能实现单会话上的幂等性,不能实现跨会话的幂等性。
         */
        properties.put("enable.idempotence", "true");//开启幂等性
        try {
            kafkaProducer = new KafkaProducer(properties);
            long startTime = System.currentTimeMillis();
            kafkaProducer.send(new ProducerRecord(KafkaConstants.TOPIC_NAME, msg, msg), new ProducerCallBack(startTime, msg));
        } catch (Exception e) {
            log.error("", e);
        } finally {
            kafkaProducer.close();
        }
    }

    /**
     * 开启事务
     * 事务是基于PID。
     * transactional.id与producerId在事务管理器中是一一对应关系,即transactional.id作为key,producerId作为value这样的键值对方式存储在事务管理器中。
     * 当producer恢复时,会通过用户自己指定的transactional.id从事务管理器获取producerId,以此来确保幂等性不同会话之间发送数据的幂等性。
     */
    public void produceInTransaction() {
        properties.put("transactional.id", "myTx");
        kafkaProducer = new KafkaProducer(properties);
        kafkaProducer.initTransactions();
        try {
            long startTime = System.currentTimeMillis();
            try {
                kafkaProducer.beginTransaction();
                for (int i = 0; i < 100; i++) {
                    String messageStr = "message_" + i;
                    if (i == 99) {
                        throw new RuntimeException("XXX");
                    }
                    kafkaProducer.send(new ProducerRecord(KafkaConstants.TOPIC_NAME, messageStr, messageStr),
                            new ProducerCallBack(startTime, messageStr));
                }
                kafkaProducer.commitTransaction();
            } catch (ProducerFencedException e) {
                kafkaProducer.close();
                log.error("", e);
            } catch (OutOfOrderSequenceException e) {
                kafkaProducer.close();
                log.error("", e);
            } catch (Exception e) {
                kafkaProducer.abortTransaction();
                log.warn("", e);
            }
        } catch (Exception e) {
            log.error("", e);
        } finally {
            kafkaProducer.close();
        }
    }

    @Slf4j
    private static class ProducerCallBack implements Callback {

        private final long startTime;

        private final String message;

        public ProducerCallBack(long startTime, String message) {
            this.startTime = startTime;
            this.message = message;
        }

        /**
         * 收到Kafka服务端发来的Ack确认消息后,会调用此函数
         *
         * @param metadata 生产者发送消息的元数据,如果发送过程出现异常,此参数为null
         * @param e        发送过程出现的异常,如果发送成功此参数为空
         */
        public void onCompletion(RecordMetadata metadata, Exception e) {
            long elapsedTime = System.currentTimeMillis() - startTime;
            if (metadata != null) {
                log.info("send success! partition:{}, offset:{}, messgage:{}, elapsedTimeMs:{}", metadata.partition(), metadata.offset(), message, elapsedTime);
            } else {
                log.error("", e);
            }
        }
    }

    public enum SendTypeEnum {

        /**
         * Async
         */
        ASYNC,

        /**
         * 不关注结果,发出去就行
         */
        WITHOUT_RESULT,

        /**
         * 同步发送
         */
        SYNC_WITH_RESULT;
    }

    public static void main(String[] args) {
        Producer producer = new Producer();
        for (int i = 0; i < 10; i++) {
            producer.produce(SendTypeEnum.ASYNC, "testMsg" + i);
        }
    }
}

4. 消息消费者

​ 消息有手动提交和异步提交。手动提交需要自己commit然后来记录便宜量,异步提交不需要自己提交offset。

1. 自动提交:

package cn.qz.cloud.kafka.client;

import cn.hutool.core.collection.CollectionUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.header.Headers;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Collection;
import java.util.Properties;

@Slf4j
public class Consumer {

    private static Properties properties = new Properties();

    static {
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BOOTSTRAP_SERVER); //required
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, KafkaConstants.Concumer.GROUP_ID);
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, "300000");//default 300000
        properties.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "500");//default 500
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); // 设置是否自动提交,设为true之后偏移量会自动记录,不需要自己ack
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        properties.put(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, "4194304"); // 服务端允许的最大消息大小为4MB。
    }

    private KafkaConsumer kafkaConsumer;

    public void consume() {
        kafkaConsumer = new KafkaConsumer(properties);
        kafkaConsumer.subscribe(Arrays.asList(KafkaConstants.TOPIC_NAME), new ConsumerRebalanceListener() {
            @Override
            public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                System.out.println(1);
            }

            @Override
            public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
                System.out.println(2);
            }
        });

        try {
            while (true) {
                ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis(20));
                for (ConsumerRecord<String, String> record : records) {
                    log.info("topic: {}, partition: {}, offset: {}, key: {}, value: {}",
                            record.topic(), record.partition(), record.offset(), record.key(), record.value());
                    /**
                     * 如果生产者发送了消息header,消费者可以获取到
                     */
                    Headers headers = record.headers();
                    if (CollectionUtil.isNotEmpty(headers)) {
                        headers.forEach(h -> {
                            log.info("key: {}, value: {}", h.key(), new String(h.value()));
                        });
                    }
                }
            }
        } catch (Exception e) {
            log.error("", e);
        } finally {
            kafkaConsumer.close();
        }

    }

    public static void main(String[] args) throws Exception {
        Consumer consumerDemo = new Consumer();
        consumerDemo.consume();
    }

}

2. 手动提交

package cn.qz.cloud.kafka.client;

import cn.hutool.core.collection.CollectionUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.header.Headers;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Collection;
import java.util.Properties;

@Slf4j
public class Consumer {

    private static Properties properties = new Properties();

    static {
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BOOTSTRAP_SERVER); //required
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, KafkaConstants.Concumer.GROUP_ID);
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, "300000");//default 300000
        properties.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "500");//default 500
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); // 设置是否自动提交,设为true之后偏移量会自动记录,不需要自己ack
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        properties.put(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, "4194304"); // 服务端允许的最大消息大小为4MB。
    }

    private KafkaConsumer kafkaConsumer;

    public void consume() {
        kafkaConsumer = new KafkaConsumer(properties);
        kafkaConsumer.subscribe(Arrays.asList(KafkaConstants.TOPIC_NAME), new ConsumerRebalanceListener() {
            @Override
            public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                System.out.println(1);
            }

            @Override
            public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
                System.out.println(2);
            }
        });

        try {
            while (true) {
                ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis(20));
                for (ConsumerRecord<String, String> record : records) {
                    log.info("topic: {}, partition: {}, offset: {}, key: {}, value: {}",
                            record.topic(), record.partition(), record.offset(), record.key(), record.value());
                    /**
                     * 如果生产者发送了消息header,消费者可以获取到
                     */
                    Headers headers = record.headers();
                    if (CollectionUtil.isNotEmpty(headers)) {
                        headers.forEach(h -> {
                            log.info("key: {}, value: {}", h.key(), new String(h.value()));
                        });
                    }
                }
                // 提交offset
                kafkaConsumer.commitAsync();
            }
        } catch (Exception e) {
            log.error("", e);
        } finally {
            kafkaConsumer.close();
        }

    }

    public static void main(String[] args) throws Exception {
        Consumer consumerDemo = new Consumer();
        consumerDemo.consume();
    }

}

2. springboot 项目测试kafka

  1. pom配置引入kafka
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>
  1. 新增kafka相关配置
server:
  port: 8080

spring:
  #kafka配置
  kafka:
    #这里改为你的kafka服务器ip和端口号
    bootstrap-servers: xxx:9092
    #=============== producer  =======================
    producer:
      #如果该值大于零时,表示启用重试失败的发送次数
      retries: 0
      #每当多个记录被发送到同一分区时,生产者将尝试将记录一起批量处理为更少的请求,默认值为16384(单位字节)
      batch-size: 16384
      #生产者可用于缓冲等待发送到服务器的记录的内存总字节数,默认值为3355443
      buffer-memory: 33554432
      #key的Serializer类,实现类实现了接口org.apache.kafka.common.serialization.Serializer
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      #value的Serializer类,实现类实现了接口org.apache.kafka.common.serialization.Serializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    #=============== consumer  =======================
    consumer:
      #用于标识此使用者所属的使用者组的唯一字符串
      group-id: test-consumer-group
      #当Kafka中没有初始偏移量或者服务器上不再存在当前偏移量时该怎么办,默认值为latest,表示自动将偏移重置为最新的偏移量
      #可选的值为latest, earliest, none
      auto-offset-reset: earliest
      #消费者的偏移量将在后台定期提交,默认值为true
      enable-auto-commit: true
      #如果'enable-auto-commit'为true,则消费者偏移自动提交给Kafka的频率(以毫秒为单位),默认值为5000。
      auto-commit-interval: 100
      #密钥的反序列化器类,实现类实现了接口org.apache.kafka.common.serialization.Deserializer
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      #值的反序列化器类,实现类实现了接口org.apache.kafka.common.serialization.Deserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
  1. 增加类:生产者、消费者
package cn.qz.cloud.kafka.springboot.springboot;

import cn.qz.cloud.kafka.client.KafkaConstants;
import com.google.common.collect.Lists;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.NewTopic;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.core.KafkaAdmin;

import javax.annotation.PostConstruct;
import java.util.ArrayList;
import java.util.List;

@Configuration
public class kafkaConfig {

    @Autowired
    private KafkaAdmin kafkaAdmin;

    @PostConstruct
    public void init() {
        /**
         * init topic
         */
        AdminClient adminClient = AdminClient.create(kafkaAdmin.getConfig());
        adminClient.deleteTopics(Lists.newArrayList(KafkaConstants.TOPIC_NAME));
        List<NewTopic> topics = new ArrayList<>();
        topics.add(new NewTopic(KafkaConstants.TOPIC_NAME, 3, (short) 1));
        adminClient.createTopics(topics);
        System.out.println("创建topic成功");
    }
}
===
  
package cn.qz.cloud.kafka.springboot.springboot;

import cn.qz.cloud.kafka.client.KafkaConstants;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping
public class Producer {

    @Autowired
    private KafkaTemplate<String, Object> kafkaTemplate;

    @GetMapping("/index")
    public String index() {
        return "index";
    }

    @GetMapping("/send-msg")
    public String send(@RequestParam String msg) {
        //生产消息
        ListenableFuture<SendResult<String, Object>> listenableFuture = kafkaTemplate.send(KafkaConstants.TOPIC_NAME, msg, msg);
        listenableFuture.addCallback(new ListenableFutureCallback<SendResult<String, Object>>() {
            @Override
            public void onFailure(Throwable throwable) {
                throwable.printStackTrace();
            }

            @Override
            public void onSuccess(SendResult<String, Object> stringObjectSendResult) {
                System.out.println(stringObjectSendResult);
            }
        });
        return msg;
    }

}

===
package cn.qz.cloud.kafka.springboot.springboot;

import cn.qz.cloud.kafka.client.KafkaConstants;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

@Component
public class Consumer {

    /**
     * org.springframework.kafka.annotation.KafkaListener 可以指定分区,指定groupId 等参数
     *
     * @param record
     */
    @KafkaListener(topics = {KafkaConstants.TOPIC_NAME})
    public void handMessage(ConsumerRecord<String, String> record) {
        String topic = record.topic();
        String msg = record.value();
        System.out.println("消费者接受消息:topic-->" + topic + ",msg->>" + msg);
    }
}  

关于配置参考:

org.springframework.boot.autoconfigure.kafka.KafkaProperties

3. 关于kafka 的分区

1. Kafka 的分区数量可以修改:

[root@VM-8-16-centos kafka_2.13-3.3.1]# bin/kafka-topics.sh --describe --topic myTopic1 --bootstrap-server localhost:9092
Topic: myTopic1	TopicId: 9LsqbI1dRVelPxx-3FJ9lw	PartitionCount: 3	ReplicationFactor: 1	Configs: segment.bytes=1073741824
	Topic: myTopic1	Partition: 0	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 1	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 2	Leader: 1	Replicas: 1	Isr: 1
[root@VM-8-16-centos kafka_2.13-3.3.1]# bin/kafka-topics.sh --alter --topic myTopic1 --bootstrap-server localhost:9092 --partitions 12
[root@VM-8-16-centos kafka_2.13-3.3.1]# bin/kafka-topics.sh --describe --topic myTopic1 --bootstrap-server localhost:9092
Topic: myTopic1	TopicId: 9LsqbI1dRVelPxx-3FJ9lw	PartitionCount: 12	ReplicationFactor: 1	Configs: segment.bytes=1073741824
	Topic: myTopic1	Partition: 0	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 1	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 2	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 3	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 4	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 5	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 6	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 7	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 8	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 9	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 10	Leader: 1	Replicas: 1	Isr: 1
	Topic: myTopic1	Partition: 11	Leader: 1	Replicas: 1	Isr: 1

2. kafka 的分区策略如下

如果是kafka-client,取分区的默认实现是:org.apache.kafka.clients.producer.internals.DefaultPartitioner

package org.apache.kafka.clients.producer.internals;

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

public class DefaultPartitioner implements Partitioner {
    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap();

    public DefaultPartitioner() {
    }

    public void configure(Map<String, ?> configs) {
    }

    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = this.nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return ((PartitionInfo)availablePartitions.get(part)).partition();
            } else {
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }

    private int nextValue(String topic) {
        AtomicInteger counter = (AtomicInteger)this.topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = (AtomicInteger)this.topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }

        return counter.getAndIncrement();
    }

    public void close() {
    }
}

这里可以看到如果有key,会将key进行计算得到值,然后转为整数,和分区数量取模做运算;如果没传,类似轮询的方式发送。

调用分区是在:

org.apache.kafka.clients.producer.KafkaProducer#send(org.apache.kafka.clients.producer.ProducerRecord<K,V>)
->
org.apache.kafka.clients.producer.KafkaProducer#doSend
->
org.apache.kafka.clients.producer.KafkaProducer#partition 源码如下:
    private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
        Integer partition = record.partition();
        return partition != null ? partition : this.partitioner.partition(record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
    }

3. 自定义自己的分区策略

  1. 新建实现类:一直送到分区0
package cn.qz.cloud.kafka.client;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

public class CustomPartitioner implements Partitioner {

    @Override
    public int partition(String s, Object o, byte[] bytes, Object o1, byte[] bytes1, Cluster cluster) {
        return 0;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> map) {

    }
}
  1. 生产者配置指定分区策略
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "cn.qz.cloud.kafka.client.CustomPartitioner");

4. 和ES分片区别

ES不能修改分片原因:https://blog.csdn.net/w1014074794/article/details/119802550

1.kafka很容易的通过管理工具增加新的分区,这种方式只会对指定了key的消息产生影响,但是这种影响其实不大,因为消费者其实还是能消费到全部的消息
2.相比较之下es不支持增加分区,原因在于es的查询流程中:query phase–fetch phase,fetch phase的情况下是根据id去获取文档的,如果此时分区数变化了,那么就会有很多id获取不到文档数据,而其实这个文档数据是存在于es的另外的分片中的,所以es并不支持在线增加分区

解释:

1.ES你先当它是个数据库,然后,你设想一种场景,你程序里自定义分库分表规则,按uid分片,uid尾号为0的在0号库,尾号1的在1号库,以此类推,你一共分了10个库。

OK,现在你说,我要加第11个库,从你改了规则那一刻,你觉得会发生什么?完犊子了,以前的数据就完全乱了。。。。所以你需要有数据迁移,数据迁移的过程,你如果要做到平滑,人为完成都非常麻烦。。。

  1. Kafka本身就要是订阅某个主题,然后会有一个group cordinator来分配机器A消费分区1,机器B消费分区2

本身就是按分区来消费的,无论扩缩容,就不存在问题。

标签:springboot,kafka,topic,org,apache,import,public,javaclient
From: https://www.cnblogs.com/qlqwjy/p/16973725.html

相关文章

  • zookeeper+kafka
    一、Zookeeper概述1、Zookeeper定义Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。2、Zookeeper工作机制Zookeeper从设计模式角度来理解:是......
  • 基于Java+Springboot+Vue+elememt甜品屋蛋糕商城系统设计和实现
    目录​​一、开发背景和技术:​​​​1.1开发背景  ​​​​1.2B/S体系结构​​​​1.3Java语言简介​​​​1.4SpringBoot框架​​​​1.5MySQL简介​​​​二、系统......
  • 10 分钟了解 Pulsar:针对 Kafka 用户的指南
    本文翻译自StreamNative博客《UnderstandingPulsarin10Minutes:AGuideforKafkaUsers》,作者ElliotWest,StreamNative软件工程师。本文由StreamNative组织翻译......
  • springboot 整合使用redis发布订阅功能
    在Java中有3种流程控制结构:顺序结构、选择结构、循环结构。顺序结构顺序结构是指程序从上向下依次执行每条语句的结构,中间没有任何的判断和跳转。选择结构选择结构是根据条......
  • 微服务同时接入多个Kafka
    准备工作自己搭建一个Kafka从官方下载Kafka,选择对应SpringBoot的版本,好在Kafka支持的版本范围比较广,当前最新版本是3.2.1,支持2.12-3.2.1范围的版本,覆盖了SpringBoot2.......
  • Spring,SpringMVC,SpringBoot,SpringCloud有什么区别和联系?
    简单介绍Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。Spring使你能够编写更干净、更可管理、并且更易于测试的代码。SpringMVC是Spring的一个模块,一......
  • springboot启动读取配置文件过程&自定义配置文件处理器
        最近看到看到spring的配置文件放在了resources/config/application.yal文件内部,第一次见。就想的研究下,springboot启动读取配置文件的过程。1.启动过程org.sp......
  • 从头开始搭建一个SpringBoot项目--SpringSecurity的配置
    OverridetheentrypointofanimageIntroducedinGitLabandGitLabRunner9.4.Readmoreaboutthe extendedconfigurationoptions.Beforeexplainingtheav......
  • SpringBoot整合Swagger2在线文档
    SpringBoot整合Swagger2在线文档一什么是swagger?我们前面有讲到说开发时会创建Restful风格的API接口,供第三方或前端人员使用,那么前端人员在使用的过程中怎么知道有......
  • Springboot整合Swagger2在线文档
    SpringBoot整合Swagger2在线文档一什么是swagger?我们前面有讲到说开发时会创建Restful风格的API接口,供第三方或前端人员使用,那么前端人员在使用的过程中怎么知道有哪些接口......