白嫖来的C端代码:
matrix.c:
#include <stdio.h>
#include <stdlib.h>
#include <alloca.h>
#include <CL/cl.h>
#pragma warning( disable : 4996 )
int main() {
cl_int error;
cl_platform_id platforms;
cl_device_id devices;
cl_context context;
FILE *program_handle;
size_t program_size;
char *program_buffer;
cl_program program;
size_t log_size;
char *program_log;
char kernel_name[] = "createBuffer";
cl_kernel kernel;
cl_command_queue queue;
//获取平台
error = clGetPlatformIDs(1, &platforms, NULL);
if (error != 0) {
printf("Get platform failed!");
return -1;
}
//获取设备
error = clGetDeviceIDs(platforms, CL_DEVICE_TYPE_GPU, 1, &devices, NULL);
if (error != 0) {
printf("Get device failed!");
return -1;
}
//创建上下文
context = clCreateContext(NULL,1,&devices,NULL,NULL,&error);
if (error != 0) {
printf("Creat context failed!");
return -1;
}
//创建程序;注意要用"rb"
program_handle = fopen("kernel.cl","rb");
if (program_handle == NULL) {
printf("The kernle can not be opened!");
return -1;
}
fseek(program_handle,0,SEEK_END);
program_size = ftell(program_handle);
rewind(program_handle);
program_buffer = (char *)malloc(program_size+1);
program_buffer[program_size] = '\0';
error=fread(program_buffer,sizeof(char),program_size,program_handle);
if (error == 0) {
printf("Read kernel failed!");
return -1;
}
fclose(program_handle);
program = clCreateProgramWithSource(context,1,(const char **)&program_buffer,
&program_size,&error);
if (error < 0) {
printf("Couldn't create the program!");
return -1;
}
//编译程序
error = clBuildProgram(program,1,&devices,NULL,NULL,NULL);
if (error < 0) {
//确定日志文件的大小
clGetProgramBuildInfo(program,devices,CL_PROGRAM_BUILD_LOG,0,NULL,&log_size);
program_log = (char *)malloc(log_size+1);
program_log[log_size] = '\0';
//读取日志
clGetProgramBuildInfo(program, devices, CL_PROGRAM_BUILD_LOG,
log_size+1, program_log, NULL);
printf("%s\n",program_log);
free(program_log);
return -1;
}
free(program_buffer);
//创建命令队列
queue = clCreateCommandQueue(context, devices, CL_QUEUE_PROFILING_ENABLE, &error);
if (error < 0) {
printf("Coudn't create the command queue");
return -1;
}
//创建内核
kernel = clCreateKernel(program,kernel_name,&error);
if (kernel==NULL) {
printf("Couldn't create kernel!\n");
return -1;
}
//初始化参数
float result[100];
float a_in[100];
float b_in[100];
for (int i = 0; i < 100; i++) {
a_in[i] = i;
b_in[i] = i*2.0;
}
//创建缓存对象
cl_mem memObject1 = clCreateBuffer(context,CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,sizeof(float)*100,a_in,&error);
if (error < 0) {
printf("Creat memObject1 failed!\n");
return -1;
}
cl_mem memObject2 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float) * 100, b_in, &error);
if (error < 0) {
printf("Creat memObject2 failed!\n");
return -1;
}
cl_mem memObject3 = clCreateBuffer(context, CL_MEM_WRITE_ONLY ,
sizeof(float) * 100, NULL, &error);
if (error < 0) {
printf("Creat memObject3 failed!\n");
return -1;
}
//设置内核参数
error = clSetKernelArg(kernel,0,sizeof(cl_mem),&memObject1);
error|= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObject2);
error |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &memObject3);
if (error != CL_SUCCESS) {
printf("Error setting kernel arguments!\n");
return -1;
}
//执行内核
size_t globalWorkSize[1] = {100};
size_t localWorkSize[1] = {1};
error = clEnqueueNDRangeKernel(queue,kernel,1,NULL,globalWorkSize,
localWorkSize,0,NULL,NULL);
if (error != CL_SUCCESS) {
printf("Error queuing kernel for execution!\n");
return -1;
}
//读取执行结果
error = clEnqueueReadBuffer(queue,memObject3,CL_TRUE,0,100*sizeof(float),
result,0,NULL,NULL);
if (error != CL_SUCCESS) {
printf("Error reading result buffer!\n");
return -1;
}
//显示结果
for (int i = 0; i < 100; i++) {
printf("%f ",result[i]);
}
printf("\n");
//释放资源
clReleaseDevice(devices);
clReleaseContext(context);
clReleaseCommandQueue(queue);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseMemObject(memObject1);
clReleaseMemObject(memObject2);
clReleaseMemObject(memObject3);
return 0;
}
OpenCL代码:
kernel.cl:
__kernel void createBuffer(__global const float *a_in,
__global const float *b_in,
__global float *result) {
int gid = get_global_id(0);
result[gid] = a_in[gid] + b_in[gid];
}
执行逻辑是,用opencl开发的kernel.cl程序,在HOST端的C程序中被动态加载,运行时编译,投递到GPU中运行,跑出结果后在从GPU MEM中读回来打印。
验证:
结合a_in,b_in初始化值和kernel.cl的逻辑,可以知道正确的结果应该是首项为0,公差为3的等差数列,我们编译运行,看一下结果是否符合我们预期:
编译命令:
gcc -I/usr/local/cuda-11.5/targets/x86_64-linux/include matrix.c -o main -L/usr/local/cuda-11.5/targets/x86_64-linux/lib/ -lOpenCL
符合预期,说明程序是对的。
和CUDA的关系:
架构上,它们在同一层面,cuda和OpenCL都属于一种并行计算开发语言,这从CUDA使用的编译器和OpenCL虽然使用GCC编译HOST侧代码,但是端册代码却需编译一个文本CL程序文件,交给OpenCL API执行在线编译看出来,他们虽然都有吸取C的语法特点,但是异构加速核心这一块和CPU端的编译器是不共用的,关于CUDA开发的例子,可以参考如下博客。