首页 > 编程语言 >python 学习记录(5)-变量、模块名的命名规则及random模块使用

python 学习记录(5)-变量、模块名的命名规则及random模块使用

时间:2022-11-29 14:06:56浏览次数:71  
标签:python random state range version 模块 print distribution

学习:Python开发技术祥解 源文件\02\2.2\2.2.1


#!/usr/bin/python
# -*- coding: UTF-8 -*-
# 变量、模块名的命名规则
# Filename: ruleModule.py

_rule = "rule information"             #定义全局变量,变量命名最好以下划线开头

#面向对象中的命名规则
class Student:                      # 类名大写
    __name = ""                     # 私有实例变量前必须有两个下划线
    def __init__(self, name):
        self.__name = name          # self相当于Java中的this
    def getName(self):              # 方法名首字母小写,其后每个单词的首字母大写
        return self.__name

if __name__ == "__main__":
    student = Student("borphi")     # 对象名小写
    print student.getName()
# 函数中的命名规则
import random

def compareNum(num1, num2):      # 函数名首字母小写,其后每个单词的首字母大写
    if(num1 > num2):
        return 1
    elif(num1 == num2):
        return 0
    else:
        return -1
num1 = random.randrange(1, 9, 2)     #关于range模块的使用见下方
num2 = random.randrange(1, 9, 2)
print "num1 =", num1
print "num2 =", num2
print compareNum(num1, num2)

运行结果:

borphi
num1 = 1
num2 = 3
-1

# 不规范的变量命名
sum = 0
i = 2000
j = 1200
sum = i + 12 * j
# 规范的变量命名    ———看其名,知其意
sumPay = 0
bonusOfYear = 2000
monthPay = 1200
sumPay = bonusOfYear + 12 * monthPay

一次赋多值

>>> v = ('a', 'b', 'e')
>>> (x, y, z) = v >>> x
'a'
>>> y
'b'
>>> z
'e'


python 学习记录(5)-变量、模块名的命名规则及random模块使用_python

v 是一个三元素的 tuple,并且 (x, y, z) 是一个三变量的 tuple。将一个 tuple 赋值给另一个 tuple,会按顺序将 v


连续值赋值

>>> range(7)                                                                    [0, 1, 2, 3, 4, 5, 6]
>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) >>> MONDAY 0
>>> TUESDAY
1
>>> SUNDAY
6


python 学习记录(5)-变量、模块名的命名规则及random模块使用_python

内置的 range 函数返回一个元素为整数的 list。这个函数的简化调用形式是接收一个上限值,然后返回一个初始值从 0 开始的 list,它依次递增,直到但不包含上限值。(如果您愿意,您可以传入其它的参数来指定一个非 0 的初始值和非 1 的步长。也可以使用 print range.__doc__

python 学习记录(5)-变量、模块名的命名规则及random模块使用_ide_03

MONDAY、TUESDAY、WEDNESDAY、THURSDAY、FRIDAY、SATURDAY 和 SUNDAY 是我们定义的变量。(这个例子来自 calendar 模块。它是一个很有趣的打印日历的小模块,像 UNIX 的 cal 命令。这个 calendar

python 学习记录(5)-变量、模块名的命名规则及random模块使用_python_04

现在每个变量都拥有了自己的值:MONDAY 的值为 0,TUESDAY 的值为 1,等等。




1.2 Python中的random模块用于生成随机数。

下面介绍一下random模块中最常用的几个函数。

random.random

random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import random
print random.random()

0.587631903386     #每次运行结果都不一样

0.272705884379

random.uniform

  random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机浮点数,两个参数其中一个是上限,一个是下限。生成的浮点数在[a,b]区间内

print random.uniform(31, 20)


print random.uniform(20, 31)

30.6312092563
21.0429564652

random.randint

  random.randint()的函数原型为:random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

print random.randint(20, 31)  #a <=b,否则会报错

22

random.randrange

  random.randrange的函数原型为:random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2)) 等效。

print random.randrange(0, 100, 5)


print random.choice(range(0, 100, 5))

15
90

random.choice

  random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。这里要说明 一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章,也可以参考:http://www.17xie.com/read-37422.html


  1. print random.choice("学习Python")   
  2. print random.choice(["JGood","is","a","handsome","boy"])  
  3. print random.choice(("Tuple","List","Dict")) 

o


JGood


Dict                                         #随机取值


random.shuffle

  random.shuffle的函数原型为:random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

list1 = ["JGood","is","a","handsome","boy"]


random.shuffle(list1)


['a', 'handsome', 'is', 'boy', 'JGood']

random.sample

  random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。

list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  


slice = random.sample(list, 5)  #从list中随机获取5个元素,作为一个片断返回  


print slice  


print list #原有序列并没有改变。 


[5, 1, 10, 8, 6]


[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]




This module implements pseudo-random number generators for variousdistributions.

For integers, uniform selection from a range. For sequences, uniform selectionof a random element, a function to generate a random permutation of a listin-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian),lognormal, negative exponential, gamma, and beta distributions. For generatingdistributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function ​​random()​​, whichgenerates a random float uniformly in the semi-open range [0.0, 1.0). Pythonuses the Mersenne Twister as the core generator. It produces 53-bit precisionfloats and has a period of 2**19937-1. The underlying implementation in C isboth fast and threadsafe. The Mersenne Twister is one of the most extensivelytested random number generators in existence. However, being completelydeterministic, it is not suitable for all purposes, and is completely unsuitablefor cryptographic purposes.

The functions supplied by this module are actually bound methods of a hiddeninstance of therandom.Random class. You can instantiate your owninstances ofRandom to get generators that don’t share state. This isespecially useful for multi-threaded programs, creating a different instance ofRandom for each thread, and using the​​jumpahead()​​ method to makeit likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a differentbasic generator of your own devising: in that case, override the​​random()​​​,​​seed()​​​,​​getstate()​​​,​​setstate()​​​ and​​jumpahead()​​​ methods.Optionally, a new generator can supply a​​getrandbits()​​​ method — thisallows​​randrange()​​ to produce selections over an arbitrarily large range.

New in version 2.4: the ​​getrandbits()​​ method.

As an example of subclassing, the ​​random​​​ module provides the​​WichmannHill​​ class that implements an alternative generator in purePython. The class provides a backward compatible way to reproduce results fromearlier versions of Python, which used the Wichmann-Hill algorithm as the coregenerator. Note that this Wichmann-Hill generator can no longer be recommended:its period is too short by contemporary standards, and the sequence generated isknown to fail some stringent randomness tests. See the references below for arecent variant that repairs these flaws.

Changed in version 2.3:

The ​​random​​​ module also provides the​​SystemRandom​​​ class whichuses the system function​​os.urandom()​​ to generate random numbersfrom sources provided by the operating system.

Bookkeeping functions:


random. seed ( [ x

] )

Initialize the basic random number generator. Optional argument x can be any​hashable​ object. Ifx is omitted orNone, current system time is used;current system time is also used to initialize the generator when the module isfirst imported. If randomness sources are provided by the operating system,they are used instead of the system time (see the ​​os.urandom()​​ functionfor details on availability).

Changed in version 2.4:

random. getstate ( )

Return an object capturing the current internal state of the generator. Thisobject can be passed to​​setstate()​​ to restore the state.

New in version 2.1.

Changed in version 2.6:

random. setstate ( state

)

state should have been obtained from a previous call to ​​getstate()​​​, and​​setstate()​​​ restores the internal state of the generator to what it was atthe time ​​setstate()​​ was called.

New in version 2.1.

random. jumpahead ( n

)

Change the internal state to one different from and likely far away from thecurrent state.n is a non-negative integer which is used to scramble thecurrent state vector. This is most useful in multi-threaded programs, inconjunction with multiple instances of theRandom class:​​setstate()​​​ or ​​seed()​​​ can be used to force all instances into thesame internal state, and then​​jumpahead()​​ can be used to force theinstances’ states far apart.

New in version 2.1.

Changed in version 2.3: Instead of jumping to a specific state, n steps ahead, jumpahead(n)jumps to another state likely to be separated by many steps.

random. getrandbits ( k

)

Returns a python ​​long​​ int withk random bits. This method is suppliedwith the MersenneTwister generator and some other generators may also provide itas an optional part of the API. When available,​​getrandbits()​​​ enables​​randrange()​​ to handle arbitrarily large ranges.

New in version 2.4.

Functions for integers:


random. randrange ( [ start

], stop

[, step

] )

Return a randomly selected element from range(start,stop,step). This isequivalent tochoice(range(start,stop, step)), but doesn’t actually build arange object.

New in version 1.5.2.

random. randint ( a,

b

)

Return a random integer N such that a<=N <=b.

Functions for sequences:


random. choice ( seq

)

Return a random element from the non-empty sequence seq. If seq is empty,raises​​IndexError​​.

random. shuffle ( x

[, random

] )

Shuffle the sequence x in place. The optional argument random is a0-argument function returning a random float in [0.0, 1.0); by default, this isthe function​​random()​​.

Note that for even rather small len(x), the total number of permutations ofx is larger than the period of most random number generators; this impliesthat most permutations of a long sequence can never be generated.

random. sample ( population,

k

)

Return a k length list of unique elements chosen from the population sequence.Used for random sampling without replacement.

New in version 2.3.

Returns a new list containing elements from the population while leaving theoriginal population unchanged. The resulting list is in selection order so thatall sub-slices will also be valid random samples. This allows raffle winners(the sample) to be partitioned into grand prize and second place winners (thesubslices).

Members of the population need not be ​hashable​ or unique. If the populationcontains repeats, then each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an ​​xrange()​​ object as anargument. This is especially fast and space efficient for sampling from a largepopulation:sample(xrange(10000000),60).

The following functions generate specific real-valued distributions. Functionparameters are named after the corresponding variables in the distribution’sequation, as used in common mathematical practice; most of these equations canbe found in any statistics text.


random. random ( )

Return the next random floating point number in the range [0.0, 1.0).

random. uniform ( a,

b

)

Return a random floating point number N such that a <= N<=b fora<=b and b<= N<=a for b< a.

The end-point value b may or may not be included in the rangedepending on floating-point rounding in the equationa+(b-a) *random().

random. triangular ( low,

high,

mode

)

Return a random floating point number N such that low <= N<=high andwith the specifiedmode between those bounds. Thelow and high boundsdefault to zero and one. Themode argument defaults to the midpointbetween the bounds, giving a symmetric distribution.

New in version 2.6.

random. betavariate ( alpha,

beta

)

Beta distribution. Conditions on the parameters are alpha > 0 andbeta>0. Returned values range between 0 and 1.

random. expovariate ( lambd

)

Exponential distribution. lambd is 1.0 divided by the desiredmean. It should be nonzero. (The parameter would be called“lambda”, but that is a reserved word in Python.) Returned valuesrange from 0 to positive infinity iflambd is positive, and fromnegative infinity to 0 if lambd is negative.

random. gammavariate ( alpha,

beta

)

Gamma distribution. (Not the gamma function!) Conditions on theparameters arealpha>0 and beta> 0.

The probability distribution function is:



x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha

random. gauss ( mu,

sigma

)

Gaussian distribution. mu is the mean, and sigma is the standarddeviation. This is slightly faster than the​​normalvariate()​​ functiondefined below.

random. lognormvariate ( mu,

sigma

)

Log normal distribution. If you take the natural logarithm of thisdistribution, you’ll get a normal distribution with meanmu and standarddeviationsigma. mu can have any value, andsigma must be greater thanzero.

random. normalvariate ( mu,

sigma

)

Normal distribution. mu is the mean, and sigma is the standard deviation.

random. vonmisesvariate ( mu,

kappa

)

mu is the mean angle, expressed in radians between 0 and 2*pi, andkappais the concentration parameter, which must be greater than or equal to zero. Ifkappa is equal to zero, this distribution reduces to a uniform random angleover the range 0 to 2*pi.

random. paretovariate ( alpha

)

Pareto distribution. alpha is the shape parameter.

random. weibullvariate ( alpha,

beta

)

Weibull distribution. alpha is the scale parameter and beta is the shapeparameter.

Alternative Generators:


class

random. WichmannHill ( [ seed

] )

Class that implements the Wichmann-Hill algorithm as the core generator. Has allof the same methods asRandom plus the​​whseed()​​ method describedbelow. Because this class is implemented in pure Python, it is not threadsafeand may require locks between calls. The period of the generator is6,953,607,871,644 which is small enough to require care that two independentrandom sequences do not overlap.

random. whseed ( [ x

] )

This is obsolete, supplied for bit-level compatibility with versions of Pythonprior to 2.1. See​​seed()​​​ for details.​​whseed()​​ does not guaranteethat distinct integer arguments yield distinct internal states, and can yield nomore than about 2**24 distinct internal states in all.

class

random. SystemRandom ( [ seed

] )

Class that uses the ​​os.urandom()​​​ function for generating random numbersfrom sources provided by the operating system. Not available on all systems.Does not rely on software state and sequences are not reproducible. Accordingly,the ​​seed()​​​ and​​jumpahead()​​​ methods have no effect and are ignored.The​​getstate()​​​ and​​setstate()​​​ methods raise​​NotImplementedError​​ if called.

New in version 2.4.

Examples of basic usage:


>>>

>>> random.random()        # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c'

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]




​http://docs.python.org/library/random.html​







标签:python,random,state,range,version,模块,print,distribution
From: https://blog.51cto.com/u_15797945/5894901

相关文章

  • Python——批量将PDF文件转为图片
    前言这里是只将pdf文件的前两页进行了转换;内容importfitz#pipinstallpymupdfimportosdefpdf2img(pdf_path,zoom_x,zoom_y):doc=fitz.open(pdf_pa......
  • 河北稳控科技VM系列振弦采集读数模块的测量模式
    河北稳控科技VM系列振弦采集读数模块的测量模式 模块有连续测量和单次测量两种测量模式,通过向测量模式寄存器WKMOD.[0]写入1使模块工作于连续测量工作模式,写入0......
  • python爬虫是什么?爬虫可以分为哪几类?
    众所周知,Python是一门脚本语言,也被称为胶水语言,其应用领域也是十分广泛的,哪怕你不想从事IT行业,学习Python语言也是百利而无一害的,今天给大家详细介绍下Python网络爬虫究......
  • VM系列振弦采集读数模块的测量模式
    河北稳控科技VM系列振弦采集读数模块的测量模式模块有连续测量和单次测量两种测量模式,通过向测量模式寄存器WKMOD.[0]写入1使模块工作于连续测量工作模式,写入0使模......
  • Python异步协程(asyncio详解)
    续上篇讲解yieldfrom博客,上篇链接:https://www.cnblogs.com/Red-Sun/p/16889182.htmlPS:本博客是个人笔记分享,不需要扫码加群或必须关注什么的(如果外站需要加群或关注的可......
  • 拥抱云原生,Java与Python基于gRPC通信
    ......
  • PYTHON 运算符
    1.1运算符运算符也称操作符,主要有算术,关系,逻辑,位等。1.2算术运算符用于整数,浮点数的计算。运算符描述实例+加-两个对象相加a+b-减-得到负数或......
  • python的特点
    python入门快速的一个语言,那它的这个简单易学的特点体现在什么地方呢。下面这一篇文章就会来详细的解析一下为什么说python语言是简单易学的。(1)python简单易学的这个特点......
  • SFP光模块接口
     1、引脚定义2、电气接口 VCCT和VCCR分别是发射和接受部分电源,要求3.3V±5%,最大供电电流300mA以上。电感的直流阻抗应该小于1欧姆,确保SFP的供电电压稳定在3.3V。推......
  • Python 10 函数
    函数创建例:【下面的一定要看懂】#作者:咸瑜#代码时间:2022年11月28日defcalc(a,b):returna+b#传参方式1[自动"位置"传参]res=calc(1,9)print(......