Overview
在 Kubernetes 中,当一个访问请求通过了登录阶段(Authentication),必须还需要请求拥有该对象的访问权限,而授权部分也是Kubernetes API 访问控制中的第二个部分 Authorization .
Authorization 在 Kubernetes中是以评估发起请求的用户,根据其身份特性评估这次请求是被 ”拒绝“ 还是 “允许”,同访问控制三部曲中其他两个插件 (Authentication, Adminssion Control) 一样,Authorization 也可以同时配置多个,当收到用户的请求时,会依次检查这个阶段配置的所有模块,如果任何一个模块对该请求授予权限(拒绝或允许),那么该阶段会直接返回,当所有模块都没有该用户所属的权限时,默认是拒绝,在Kubernetes中,被该插件拒绝的用户显示为HTTP 403。
objective:
- 了解kubernetes Authorization机制
- 了解授权系统的设计
- 完成实验,使用 OPA 作为 Kubernetes 外部用户,权限认证模型 RBAC 的替代品
Kubernetes是如何对用户授权的
kubernetes对用户授权需要遵守的shema必须拥有下列属性,代码位于pkg\apis\authorization\types.go
type SubjectAccessReview struct {
// API必须实现的部分
metav1.TypeMeta
metav1.ObjectMeta
// 请求需要遵守的属性
Spec SubjectAccessReviewSpec
// 请求被授权的状态
Status SubjectAccessReviewStatus
}
这里可以看到数据模型是
type SubjectAccessReviewSpec struct {
// ResourceAttributes describes information for a resource access request
ResourceAttributes *ResourceAttributes
// NonResourceAttributes describes information for a non-resource access request
NonResourceAttributes *NonResourceAttributes
// 请求的用户,必填
// 如果只传递 User,而没有Group,那么权限必须与用户对应,例如rolebinding/clusterrolebing
// 如果传递了User与Group,那么rolebinding/clusterrolebing权限最大为Group,最小为User
User string
// Groups是用户所属组,可以有多个
Groups []string
// Extra corresponds to the user.Info.GetExtra() method from the authenticator. Since that is input to the authorizer
// 这里通常对于验证和授权阶段,没有特别的需求
Extra map[string]ExtraValue
// UID 请求用户的UID,通常来说与User相同,Authentication中也是这么做的
UID string
}
由此可得知,在授权部分,kubernetes要求请求必须存在
- 用户类属性:user,group ,extra 由 Authentication 提供的用户信息
- 请求类属性:
- API资源:
curl $API_SERVER_URL/api/v1/namespaces
- 请求路径: 非API资源格式的路径,
/api
,/healthz
- verb:HTTP请求方法,GET,POST..
- API资源:
- 资源类属性:
- 访问的资源的名称或ID,如Pod名
- 要访问的名称空间
- 资源所属组,Kubernetes资源有GVR组成
那么,SubjectAccessReview.Spec
为要审查的对象,SubjectAccessReview.Status
为审查结果,通常在每个请求到来时,入库前必定被审查
Kubernetes中的授权模式
知道授权的对象,就需要知道如何对该对象进行授权,Kubernetes authorizer 提供了下列授权模式
pkg/kubeapiserver/authorizer/modes/modes.go
const (
// ModeAlwaysAllow is the mode to set all requests as authorized
ModeAlwaysAllow string = "AlwaysAllow"
// ModeAlwaysDeny is the mode to set no requests as authorized
ModeAlwaysDeny string = "AlwaysDeny"
// ModeABAC is the mode to use Attribute Based Access Control to authorize
ModeABAC string = "ABAC"
// ModeWebhook is the mode to make an external webhook call to authorize
ModeWebhook string = "Webhook"
// ModeRBAC is the mode to use Role Based Access Control to authorize
ModeRBAC string = "RBAC"
// ModeNode is an authorization mode that authorizes API requests made by kubelets.
ModeNode string = "Node"
)
可以看出,大致遵循模式进行授权
- ModeABAC (Attribute-based access control):是一种将属性分组,而后属性组分配给用户的模型,通常情况下这种模型很少使用
- ModeRBAC (Role Based Access Control) :是kubernetes主流的授权模型,是将用户分组,将属性分配给用户组的一种模型
- ModeNode:对kubelet授权的方式
- ModeWebhook:用户注入给Kubernetes 授权插件进行回调的一种授权模式
Kubernetes 授权生命周期
在启动 kube-apiserver
是都会初始化被注入一个 Authorizer
而这个被上面模式进行实现,如 RBACAuthorizer
, WebhookAuthorizer
k8s.io/apiserver/pkg/authorization/authorizer/interfaces.go
type Authorizer interface {
Authorize(ctx context.Context, a Attributes) (authorized Decision, reason string, err error)
}
在 Run 中会创建一个CreateServerChain,这里面可以看到对应注册进来的 Authorizer
k8s.io\kubernetes\cmd\kube-apiserver\app\server.go
// Run runs the specified APIServer. This should never exit.
func Run(completeOptions completedServerRunOptions, stopCh <-chan struct{}) error {
// To help debugging, immediately log version
klog.Infof("Version: %+v", version.Get())
klog.InfoS("Golang settings", "GOGC", os.Getenv("GOGC"), "GOMAXPROCS", os.Getenv("GOMAXPROCS"), "GOTRACEBACK", os.Getenv("GOTRACEBACK"))
server, err := CreateServerChain(completeOptions)
if err != nil {
return err
}
prepared, err := server.PrepareRun()
if err != nil {
return err
}
return prepared.Run(stopCh)
}
可以看到在创建这个 Authorizer
时会调用一个 BuildAuthorizer
构建这个 Authorizer
k8s.io/kubernetes/cmd/kube-apiserver/app/server.go
func buildGenericConfig(
s *options.ServerRunOptions,
proxyTransport *http.Transport,
) (
genericConfig *genericapiserver.Config,
versionedInformers clientgoinformers.SharedInformerFactory,
serviceResolver aggregatorapiserver.ServiceResolver,
pluginInitializers []admission.PluginInitializer,
admissionPostStartHook genericapiserver.PostStartHookFunc,
storageFactory *serverstorage.DefaultStorageFactory,
lastErr error,
) {
...
genericConfig.Authorization.Authorizer, genericConfig.RuleResolver, err = BuildAuthorizer(s, genericConfig.EgressSelector, versionedInformers)
if err != nil {
lastErr = fmt.Errorf("invalid authorization config: %v", err)
return
}
...
}
在代码 BuildAuthorizer
中构建了这个 Authorizer
其中可以看到 s 为 kube-apiserver
对于授权阶段的参数,例如参数,使用哪些模式 --authorization-mode
,使用的webhook的配置 --authentication-token-webhook-config-file
等,通过传入的参数来决定这些
// BuildAuthorizer constructs the authorizer
func BuildAuthorizer(s *options.ServerRunOptions, EgressSelector *egressselector.EgressSelector, versionedInformers clientgoinformers.SharedInformerFactory) (authorizer.Authorizer, authorizer.RuleResolver, error) {
// 这里构建出 authorizer.Config
authorizationConfig := s.Authorization.ToAuthorizationConfig(versionedInformers)
if EgressSelector != nil {
egressDialer, err := EgressSelector.Lookup(egressselector.ControlPlane.AsNetworkContext())
if err != nil {
return nil, nil, err
}
authorizationConfig.CustomDial = egressDialer
}
// 然后返回你开启的每一个webhook的模式的 authorizer
return authorizationConfig.New()
}
而对应这部分的数据结构如下所示 k8s.io/pkg/kubeapiserver/options/authorization.go
// BuiltInAuthorizationOptions contains all build-in authorization options for API Server
type BuiltInAuthorizationOptions struct {
Modes []string
PolicyFile string
WebhookConfigFile string
WebhookVersion string
WebhookCacheAuthorizedTTL time.Duration
WebhookCacheUnauthorizedTTL time.Duration
// WebhookRetryBackoff specifies the backoff parameters for the authorization webhook retry logic.
// This allows us to configure the sleep time at each iteration and the maximum number of retries allowed
// before we fail the webhook call in order to limit the fan out that ensues when the system is degraded.
WebhookRetryBackoff *wait.Backoff
}
例如在客户端部分,如果需要授权,都会使用该操作,可以在代码 k8s.io/pkg/registry/authorization/subjectaccessreview/rest.go 中可以看到REST中会 authorizer.Authorize 去验证是否有权限操作
func (r *REST) Create(ctx context.Context, obj runtime.Object, createValidation rest.ValidateObjectFunc, options *metav1.CreateOptions) (runtime.Object, error) {
subjectAccessReview, ok := obj.(*authorizationapi.SubjectAccessReview)
if !ok {
return nil, apierrors.NewBadRequest(fmt.Sprintf("not a SubjectAccessReview: %#v", obj))
}
if errs := authorizationvalidation.ValidateSubjectAccessReview(subjectAccessReview); len(errs) > 0 {
return nil, apierrors.NewInvalid(authorizationapi.Kind(subjectAccessReview.Kind), "", errs)
}
if createValidation != nil {
if err := createValidation(ctx, obj.DeepCopyObject()); err != nil {
return nil, err
}
}
authorizationAttributes := authorizationutil.AuthorizationAttributesFrom(subjectAccessReview.Spec)
decision, reason, evaluationErr := r.authorizer.Authorize(ctx, authorizationAttributes)
subjectAccessReview.Status = authorizationapi.SubjectAccessReviewStatus{
Allowed: (decision == authorizer.DecisionAllow),
Denied: (decision == authorizer.DecisionDeny),
Reason: reason,
}
if evaluationErr != nil {
subjectAccessReview.Status.EvaluationError = evaluationErr.Error()
}
return subjectAccessReview, nil
}
authorizer.Authorize 会被实现在每一个该阶段的模式下,在 withAuthentication 构建了一个授权的 http.Handler 函数
k8s.io/apiserver/pkg/endpoints/filters/authorization.go
func WithAuthorization(handler http.Handler, a authorizer.Authorizer, s runtime.NegotiatedSerializer) http.Handler {
if a == nil {
klog.Warning("Authorization is disabled")
return handler
}
return http.HandlerFunc(func(w http.ResponseWriter, req *http.Request) {
ctx := req.Context()
attributes, err := GetAuthorizerAttributes(ctx)
if err != nil {
responsewriters.InternalError(w, req, err)
return
}
// 这里调用了authorizer.Authorizer传入的authorizer来进行鉴权
authorized, reason, err := a.Authorize(ctx, attributes)
// an authorizer like RBAC could encounter evaluation errors and still allow the request, so authorizer decision is checked before error here.
if authorized == authorizer.DecisionAllow {
audit.AddAuditAnnotations(ctx,
decisionAnnotationKey, decisionAllow,
reasonAnnotationKey, reason)
handler.ServeHTTP(w, req)
return
}
if err != nil {
audit.AddAuditAnnotation(ctx, reasonAnnotationKey, reasonError)
responsewriters.InternalError(w, req, err)
return
}
klog.V(4).InfoS("Forbidden", "URI", req.RequestURI, "Reason", reason)
audit.AddAuditAnnotations(ctx,
decisionAnnotationKey, decisionForbid,
reasonAnnotationKey, reason)
responsewriters.Forbidden(ctx, attributes, w, req, reason, s)
})
}
接下来在 createAggregatorConfig 调用了 BuildHandlerChainWithStorageVersionPrecondition 而又调用了
cmd/kube-apiserver/app/aggregator.go
func createAggregatorConfig(
kubeAPIServerConfig genericapiserver.Config,
commandOptions *options.ServerRunOptions,
externalInformers kubeexternalinformers.SharedInformerFactory,
serviceResolver aggregatorapiserver.ServiceResolver,
proxyTransport *http.Transport,
pluginInitializers []admission.PluginInitializer,
) (*aggregatorapiserver.Config, error) {
// make a shallow copy to let us twiddle a few things
// most of the config actually remains the same. We only need to mess with a couple items related to the particulars of the aggregator
genericConfig := kubeAPIServerConfig
genericConfig.PostStartHooks = map[string]genericapiserver.PostStartHookConfigEntry{}
genericConfig.RESTOptionsGetter = nil
// prevent generic API server from installing the OpenAPI handler. Aggregator server
// has its own customized OpenAPI handler.
genericConfig.SkipOpenAPIInstallation = true
if utilfeature.DefaultFeatureGate.Enabled(genericfeatures.StorageVersionAPI) &&
utilfeature.DefaultFeatureGate.Enabled(genericfeatures.APIServerIdentity) {
// Add StorageVersionPrecondition handler to aggregator-apiserver.
// The handler will block write requests to built-in resources until the
// target resources' storage versions are up-to-date.
genericConfig.BuildHandlerChainFunc = genericapiserver.BuildHandlerChainWithStorageVersionPrecondition
}
而 k8s.io/apiserver/pkg/server/config.go 返回这个函数 BuildHandlerChainWithStorageVersionPrecondition
handlerChainBuilder := func(handler http.Handler) http.Handler {
return c.BuildHandlerChainFunc(handler, c.Config)
}
apiServerHandler := NewAPIServerHandler(name, c.Serializer, handlerChainBuilder, delegationTarget.UnprotectedHandler())
s := &GenericAPIServer{
discoveryAddresses: c.DiscoveryAddresses,
LoopbackClientConfig: c.LoopbackClientConfig,
legacyAPIGroupPrefixes: c.LegacyAPIGroupPrefixes,
admissionControl: c.AdmissionControl,
Serializer: c.Serializer,
AuditBackend: c.AuditBackend,
Authorizer: c.Authorization.Authorizer,
delegationTarget: delegationTarget,
EquivalentResourceRegistry: c.EquivalentResourceRegistry,
HandlerChainWaitGroup: c.HandlerChainWaitGroup,
Handler: apiServerHandler,
listedPathProvider: apiServerHandler,
只要知道哪里调用了 handlerChainBuilder 就知道了鉴权步骤在哪里了,可以看到 handlerChainBuilder 被传入了 apiServerHandler,而后被作为参数返回给 listedPathProvider: &GenericAPIServer{}
listedPathProvider在 k8s.io/apiserver/pkg/server/genericapiserver.go
func (s *GenericAPIServer) ListedPaths() []string {
return s.listedPathProvider.ListedPaths()
}
ListedPaths() 又在代码 k8s.io/apiserver/pkg/server/routes/index.go 中被 构建成这个http服务
// ListedPaths returns the paths that should be shown under /
func (a *APIServerHandler) ListedPaths() []string {
var handledPaths []string
// Extract the paths handled using restful.WebService
for _, ws := range a.GoRestfulContainer.RegisteredWebServices() {
handledPaths = append(handledPaths, ws.RootPath())
}
handledPaths = append(handledPaths, a.NonGoRestfulMux.ListedPaths()...)
sort.Strings(handledPaths)
return handledPaths
}
// ServeHTTP serves the available paths.
func (i IndexLister) ServeHTTP(w http.ResponseWriter, r *http.Request) {
responsewriters.WriteRawJSON(i.StatusCode, metav1.RootPaths{Paths: i.PathProvider.ListedPaths()}, w)
}
至此,可以知道,每次请求时,我们在配置 kube-apiserver 配置的授权插件 .authorizer.Authorize
,而这个参数会被带至 subjectAccessReview
向下传递,其中 User,Group,Extra,UID 为 authentication 部分提供
Authorization webhook
Authorization webhook 位于 k8s.io/apiserver/plugin/pkg/authorizer/webhook/webhook.go,是通过 kube-apiserver 注入进来的配置,就是上面讲到的如果提供了配置就会加入这种类型的 Authorization 插件来认证。当配置此类型的授权插件,Authorize 会被调用,通过向注入的 URL 发起 REST 请求进行授权,请求对象是 v1beta1.SubjectAccessReview
下面是请求的实例
{
"apiVersion": "authorization.k8s.io/v1beta1",
"kind": "SubjectAccessReview",
"spec": {
"resourceAttributes": {
"namespace": "kittensandponies",
"verb": "GET",
"group": "group3",
"resource": "pods"
},
"user": "jane",
"group": [
"group1",
"group2"
]
}
}
webhook 返回的格式
// 如果允许这个用户访问则返回这个格式
{
"apiVersion": "authorization.k8s.io/v1beta1",
"kind": "SubjectAccessReview",
"status": {
"allowed": true
}
}
// 如果拒绝这个用户访问则返回这个格式
{
"apiVersion": "authorization.k8s.io/v1beta1",
"kind": "SubjectAccessReview",
"status": {
"allowed": false,
"reason": "user does not have read access to the namespace"
}
}
对于webhook来讲,只要接受请求保持上面格式,而返回格式为下属格式,就可以很好的将Kubernetes 权限体系接入到三方系统中,例如 open policy agent。
同样 webhook 也提供了 Authorize
函数,如同上面一样会被注入到每个handler中被执行
func (w *WebhookAuthorizer) Authorize(ctx context.Context, attr authorizer.Attributes) (decision authorizer.Decision, reason string, err error) {
r := &authorizationv1.SubjectAccessReview{}
if user := attr.GetUser(); user != nil {
r.Spec = authorizationv1.SubjectAccessReviewSpec{
User: user.GetName(),
UID: user.GetUID(),
Groups: user.GetGroups(),
Extra: convertToSARExtra(user.GetExtra()),
}
}
if attr.IsResourceRequest() {
r.Spec.ResourceAttributes = &authorizationv1.ResourceAttributes{
Namespace: attr.GetNamespace(),
Verb: attr.GetVerb(),
Group: attr.GetAPIGroup(),
Version: attr.GetAPIVersion(),
Resource: attr.GetResource(),
Subresource: attr.GetSubresource(),
Name: attr.GetName(),
}
} else {
r.Spec.NonResourceAttributes = &authorizationv1.NonResourceAttributes{
Path: attr.GetPath(),
Verb: attr.GetVerb(),
}
}
key, err := json.Marshal(r.Spec)
if err != nil {
return w.decisionOnError, "", err
}
if entry, ok := w.responseCache.Get(string(key)); ok {
r.Status = entry.(authorizationv1.SubjectAccessReviewStatus)
} else {
var result *authorizationv1.SubjectAccessReview
// WithExponentialBackoff will return SAR create error (sarErr) if any.
if err := webhook.WithExponentialBackoff(ctx, w.retryBackoff, func() error {
var sarErr error
var statusCode int
start := time.Now()
result, statusCode, sarErr = w.subjectAccessReview.Create(ctx, r, metav1.CreateOptions{})
latency := time.Since(start)
if statusCode != 0 {
w.metrics.RecordRequestTotal(ctx, strconv.Itoa(statusCode))
w.metrics.RecordRequestLatency(ctx, strconv.Itoa(statusCode), latency.Seconds())
return sarErr
}
if sarErr != nil {
w.metrics.RecordRequestTotal(ctx, "<error>")
w.metrics.RecordRequestLatency(ctx, "<error>", latency.Seconds())
}
return sarErr
}, webhook.DefaultShouldRetry); err != nil {
klog.Errorf("Failed to make webhook authorizer request: %v", err)
return w.decisionOnError, "", err
}
r.Status = result.Status
if shouldCache(attr) {
if r.Status.Allowed {
w.responseCache.Add(string(key), r.Status, w.authorizedTTL)
} else {
w.responseCache.Add(string(key), r.Status, w.unauthorizedTTL)
}
}
}
switch {
case r.Status.Denied && r.Status.Allowed:
return authorizer.DecisionDeny, r.Status.Reason, fmt.Errorf("webhook subject access review returned both allow and deny response")
case r.Status.Denied:
return authorizer.DecisionDeny, r.Status.Reason, nil
case r.Status.Allowed:
return authorizer.DecisionAllow, r.Status.Reason, nil
default:
return authorizer.DecisionNoOpinion, r.Status.Reason, nil
}
}
执行 webhook.Authorize()
会执行 w.subjectAccessReview.Create()
在这里可以看到会发起一个POST请求将 v1beta1.SubjectAccessReview
传入给webhook
k8s.io/apiserver/plugin/pkg/authorizer/webhook/webhook.go.Create
func (t *subjectAccessReviewV1Client) Create(ctx context.Context, subjectAccessReview *authorizationv1.SubjectAccessReview, opts metav1.CreateOptions) (result *authorizationv1.SubjectAccessReview, statusCode int, err error) {
result = &authorizationv1.SubjectAccessReview{}
restResult := t.client.Post().
Resource("subjectaccessreviews").
VersionedParams(&opts, scheme.ParameterCodec).
Body(subjectAccessReview).
Do(ctx)
restResult.StatusCode(&statusCode)
err = restResult.Into(result)
return
}
实验:基于OPA的RBAC模型
通过上面阐述,大致了解到kubernetes授权模型,实验的目的是为了呈上启下,巩固上面的基础以及为如何设计kubernetes的授权系统
实验环境
- 一个kubernetes集群
- 了解OPA相关技术
实验大致分为以下几个步骤:
- 建立一个HTTP服务器用于返回给kubernetes Authorization服务
- 查询用户操作是否有权限
实验开始
编写webhook Authorization
这里做的就是接收 subjectAccessReview
,将授权结果赋予 subjectAccessReview.Status.Allowed
,true/false,然后返回 subjectAccessReview
即可
func serveAuthorization(w http.ResponseWriter, r *http.Request) {
b, err := ioutil.ReadAll(r.Body)
if err != nil {
httpError(w, err)
return
}
klog.V(4).Info("Receied: ", string(b))
var subjectAccessReview authoV1.SubjectAccessReview
err = json.Unmarshal(b, &subjectAccessReview)
if err != nil {
klog.V(3).Info("Json convert err: ", err)
httpError(w, err)
return
}
subjectAccessReview.Status.Allowed = rbac.RBACChek(&subjectAccessReview)
b, err = json.Marshal(subjectAccessReview)
if err != nil {
klog.V(3).Info("Json convert err: ", err)
httpError(w, err)
return
}
w.Write(b)
klog.V(3).Info("Returning: ", string(b))
}
编写rego
这里简单配置了两个权限,admin 组拥有所有操作权限,不包含 watch
,而 conf 组只能 list,在访问控制三部曲中,已授权的会增加一个组,例如 system:authenticated
代表被 Authentication 授予通过的用户,所以 Groups 为一个数组格式,这里检查为两个数组的交集 > 1,则肯定代表这个用户拥有该组的权限。
实验中 rego 部分可以在 playground 中测试
var module = `package k8s
import future.keywords.in
default allow = false
admin_verbs := {"create", "list", "delete", "update"}
admin_groups := {"admin"}
conf_groups := {"conf"}
conf_verbs := {"list"}
allow {
groups := {v | v := input.spec.groups[_]}
count(admin_groups & groups) > 0
input.spec.resourceAttributes.verb in admin_verbs
}
allow {
groups := {v | v := input.spec.groups[_]}
count(conf_groups & groups) > 0
input.spec.resourceAttributes.verb in conf_verbs
}
`
下面编写 RBACChek 函数,由于go1.16提供了embed功能,就可以直接将 rego embed go中,最后result.Allowed()
如果 input 通过评估则为 true
,反之亦然
func RBACChek(req *authoV1.SubjectAccessReview) bool {
fmt.Printf("\n%+v\n", req)
query, err := rego.New(
// query是要检查的模块,data是固定格式,这与playground中不一样,需要.allow
// k8s是package
rego.Query("data.k8s.allow"),
rego.Module("k8s.allow", module),
).PrepareForEval(context.TODO())
if err != nil {
klog.V(4).Info(err)
return false
}
result, err := query.Eval(context.TODO(), rego.EvalInput(req))
if err != nil {
klog.V(4).Info("evaluation error:", err)
return false
} else if len(result) == 0 {
klog.V(4).Info("undefined result", err)
return false
}
return result.Allowed()
}
配置kube-apiserver
Authorization webhook 与其他 webhook 一样,启用的方法也是修改 kube-apiserver 参数,并指定 kubeconfig
类型的配置文件,其中对于 Kubernetes 集群来说 kubeconfig
是 kubernetes 客户端访问的信息,而 webhook 这里的 kubeconfig
配置文件要填写的则是 webhook的信息,其中 user,cluster,contexts 属性均为 webhook的配置信息 [1]。
apiVersion: v1
kind: Config
clusters:
- cluster:
server: http://10.0.0.1:88/authorization
insecure-skip-tls-verify: true
name: authorizator
users:
- name: webhook-authorizator
current-context: webhook-authorizator@authorizator
contexts:
- context:
cluster: authorizator
user: webhook-authorizator
name: webhook-authorizator@authorizator
修改 kube-apiserver 参数
--authorization-webhook-config-file=/etc/kubernetes/auth/authorization-webhook.conf \
# 1s 是为了在测试时减少等待的时间,否则缓存太长不会走webhook
--authorization-webhook-cache-authorized-ttl=1s \
--authorization-webhook-cache-unauthorized-ttl=1s \
# api版本建议还是指定下,因为v1与v1beta1的 subjectAccessReview 内容不同rego因为格式问题会为空从而false
# 代码中schema v1与v1beta1相同,测试时收到的请求的格式不一样,没找到原因 TODO
--authorization-webhook-version=v1 \
验证结果
准备三个外部用户,admin,admin1,searchUser,admin,admin1 为 admin 组,拥有所有权限,searchUser 为 conf 组,仅能 list 操作
- name: admin
user:
token: admin@111
- name: admin1
user:
token: admin1@111
- name: searchUser
user:
token: searchUser@111
测试用户 searchUser ,可以看到只能list操作
$ kubectl get pod --user=searchUser
NAME READY STATUS RESTARTS AGE
netbox-85865d5556-hfg6v 1/1 Running 0 96d
netbox-85865d5556-vlgr4 1/1 Running 0 96d
pod 0/1 CrashLoopBackOff 95 22h
$ kubectl delete pod pod --user=searchUser
Error from server (Forbidden): pods "pod" is forbidden: User "searchUser" cannot delete resource "pods" in API group "" in the namespace "default"
测试用户 admin,可以看出可以进行写与查看的操作
$ kubectl delete pod pod --user=admin
pod "pod" deleted
$ kubectl get pod --user=admin
NAME READY STATUS RESTARTS AGE
netbox-85865d5556-hfg6v 1/1 Running 0 96d
netbox-85865d5556-vlgr4 1/1 Running 0 96d
总结
kubernetes 提供了 Authentication,Authorization,Adminsion Control,Audit 几种webhook,可以自行在Kubernetes之上实现一个4A的标准,Authorization部分提供了一个并行与,但脱离Kubernetes的授权系统,使得外部用户可以很灵活的被授权,而不是手动管理多个clusterrolebinding,rolebingding 之类的资源。
实验中使用了OPA,这里是将rego静态文件embed入go中,在正常情况下OPA给出的架构如下图所示,存在一个 OPA Service,来进行验证,而实验中是直接嵌入到go中,OPA本身也提供了 HTTP Service,可以直接编译运行为 HTTP服务 [2]。 TODO
OPA本身提供了 Gatekeeper ,可以作为Kubernetes 资源使用,官方示例是作为为一个kubernetes准入网关,也提供了ingress浏览的验证 [3]
Notes:实验中还需要注意的一点则是,如果RBAC与webhook同时验证时,需要合理的规划权限,例如集群组件的账户,coreDNS,flannel等,也会被拒绝(在OPA设置的
default allow = false
)。
标签:authorizer,return,Kubernetes,err,nil,webhook,源码,Authorization,string From: https://www.cnblogs.com/Cylon/p/16923847.htmlReference
[1] Webhook Mode
[2] HTTP APIs
[5] 初探 Open Policy Agent 實作 RBAC (Role-based access control) 權限控管