首页 > 编程语言 >查找算法总结

查找算法总结

时间:2022-11-22 14:05:53浏览次数:38  
标签:总结 return int mid 算法 查找 key root left


查找算法总结_二叉排序树

顺序查找

基本思想

int search(int a[], int n, int key){
for (int i = 0; i < n; i++)
if (a[i] == key)
return i + 1;
return 0;
}

经典查找——设置哨兵

int search(int a[], int n, int key){
a[0] = key;
for (int i = n; a[i] != key; i--) // 从后往前查找
return i;
}

二分查找

特征:

  • 待查表是有序表
  • 非链表结构

二分模板一共有两个,分别适用于不同情况。
算法思路:假设目标值在闭区间[l, r]中, 每次将区间长度缩小一半,当l = r时,我们就找到了目标值。

版本1

当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作
是r = mid或者l = mid + 1;,计算mid时不需要加1。
模板:

int bearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}

版本2

当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,
其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。

int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}

python

查找算法总结_子树_02

def binary_search(list, item):
# low and high keep track of which part of the list you'll search in.
low = 0
high = len(list) - 1

# While you haven't narrowed it down to one element ...
while low <= high:
# ... check the middle element
mid = (low + high) // 2
guess = list[mid]
# Found the item.
if guess == item:
return mid
# The guess was too high.
if guess > item:
high = mid - 1
# The guess was too low.
else:
low = mid + 1

# Item doesn't exist
return None

my_list = [1, 3, 5, 7, 9]
print(binary_search(my_list, 3)) # => 1

# 'None' means nil in Python. We use to indicate that the item wasn't found.
print(binary_search(my_list, -1)) # => None

思考过程:

一般写二分的思考顺序是这样的:首先通过题目背景和check(mid)函数的逻辑,判断答案落在左半区间还是右半区间。
左右半区间的划分方式一共有两种:

  • 中点mid属于左半区间,则左半区间是[l, mid],右半区间是[mid+1, r],更新方式是r = mid;或者 l = mid + 1;,此时用第一个模板;
  • 中点mid属于右半区间,则左半区间是[l, mid-1],右半区间是[mid, r],更新方式是r = mid - 1;或者 l = mid;,此时用第二个模板;

动态查找——二叉排序树(left < root < right)

特征:插入或删除较为频繁

查找

template <class T>
Node<T>* search(Node<T>* root, T key){
if (!root) return nullptr;
if (root -> val == key) return root;
else if (root -> val > key) return search(root -> left, key);
else return search(root -> right, key);
}

插入

//         30
// / \
// 20 40
// / \ /
// 10 25 35
void insertBST(Node<int>* root, Node<int>* s){
if (!root) root = s;
else if (s -> val < root -> val)
insertBST(root -> left, s);
else
insertBST(root -> right, s);
}

二叉排序树建立过程

void creat(Node<int>* root, int r[], int n){
for (int i = 0; i < n; i++){
auto s = new Node<int>(-1);
s -> val = r[i];
s -> left = s -> right = nullptr;
insertBST(root, s);
}
}

删除

删除之后仍然要保证有序性:

  1. 删除叶子结点:直接删除
  2. 结点只有左(右)子树:将结点删除并将其左(右)子树连接在父结点上
  3. 结点左右都有:查找该结点的前驱,将待删除结点用前驱结点覆盖,并删除其前驱节点。
template <class T>
void Delete(Node<T>* &R){
Node<T> *q, *s; // s是R的前驱,q是s的双亲
if (R -> left == nullptr) {
q = R;
R = R -> right;
delete R;
}
else if (R -> right == nullptr) {
q = R;
R = R -> left;
delete R;
}
q = R;
s = R -> left;
while (s ->rignt != nullptr)
q = s, s = s -> right;
R -> val = s -> val
if (q != R)
q -> right = s -> left;
else
R -> left = s -> left;
d elete s;
}


标签:总结,return,int,mid,算法,查找,key,root,left
From: https://blog.51cto.com/u_13875041/5877893

相关文章